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EXECUTIVE SUMMARY 

In line with European legislation, Elia determines the FRR / aFRR / mFRR reserve capacity needs for its LFC block. 

While FRR / mFRR needs are already dimensioned dynamically, i.e. on a daily basis based on the expected system 

risks, an implementation plan for a dynamic dimensioning of the aFRR needs was presented in 2020. These dynamic 

dimensioning methods are developed by Elia to minimize the reserve capacity needs due to increasing shares of vari-

able renewable generation. As a next step, Elia is now investigating the possibility to optimize the allocation of the 

required reserve capacity needs to contracted and non-contracted balancing means trough a dynamic calculation of 

the available balancing means, i.e. the available non-contracted balancing energy bids, the available reserve sharing 

and the required balancing capacity to be procured. This is in contrast to the current approach in which this allocation 

is still calculated periodically based on the availability of non-contracted capacity balancing means and subtracting the 

potential ‘firm’ capacity from the required mFRR / aFRR balancing capacity to be procured. 

The objective of this study is to analyze if Elia’s available non-contracted balancing energy bids for the next 

day can be predicted in order to facilitate a dynamic calculation of the balancing means. For this, a machine 

learning approach is put forward in which an algorithm is trained, based on historic observations, to predict the available 

non-contracted balancing means for each quarter-hour of the next day. These non-contracted balancing means include 

the non-contracted balancing energy bids and the available reserve sharing with other TSOs. When considering to 

account these volumes in the calculation of the balancing capacity to be procured, the volumes are to be predicted, 

similar to the dynamic FRR dimensioning process, before the capacity auctions, i.e. at the latest 7 AM of the day for 

which the balancing capacity is to be procured.  

In a first step, the target variables (to be predicted) and features (input data) to make the predictions are identified. 

Five target variables are determined: (1) the mFRR non-contracted balancing energy bids, based on available regula-

tion capacity published by Elia, (2) the available non-contracted bids provided by the pumped-hydro storage units, (3) 

the available mFRR reserve sharing, (4) the total non-contracted mFRR balancing means and (5) the total non-con-

tracted aFRR balancing means. In order to predict these target variables, a list of up to 168 features has been com-

posed for which a correlation matrix helps to select the most relevant features to be incorporated in the machine learn-

ing algorithms. 

In a second step, Elia composed a list of relevant machine learning algorithms. Based on the expected accuracy, 

complexity and suitability, three models were selected for a quantitative analysis: a linear regression, a random forests 

and a neural networks model. A textbook approach is followed to train the algorithms in order to find the best performing 

algorithm of the three selected methods. Based on a historic data set for a period of two years (from April 16, 2019 until 

April 15, 2021), the best performing algorithm is found to be the random forests, being able to predict, on average, the 

highest available volume of non-contracted balancing energy bids while maintaining a confidence level of 99%.  

In a third step, simulations are conducted to create time series of predicted non-contracted balancing means. The 

time series of predicted non-contracted upward mFRR balancing means show that for upward, a potential volume of 

500 MW can be predicted, on average, while a volume of 1000 MW can be ensured for 14% of the time. It has to be 

understood that a large contribution is provided by the available mFRR reserve sharing, and this up to a current maxi-

mum limit of 312 MW following the system operation guidelines. It is confirmed that there is a potential value for 

this prediction tool and this potential is expected to further increase with additional volumes brought by a 

consumer-centric market design and the upcoming EU balancing energy platforms. However, one of the main 
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conditions to harness this value is to find appropriate procurement mechanisms to deduct this capacity from the bal-

ancing capacity to be procured.  

Histogram of available non-contracted mFRR balancing means 

  

In contrast, the time series of predicted non-contracted downward mFRR balancing means demonstrate a potential 

volume of nearly 1940 MW, on average, while a volume of 1000 MW can be ensured for up to 86% of the time. It is 

important to understand that these volumes are always lower than the observed availability. This is explained as the 

forecast tool aims to forecast guaranteed volumes, expected to be available with a 99% confidence level. For instance, 

when looking at the available volumes on the downward side over the same period, a volume of 1000 MW can be 

ensured for up to 97% of the time. The results confirm the current approach to not procure downward mFRR 

balancing capacity and it can therefore be concluded that there is no potential value for this prediction tool as 

long as observed non-contracted balancing means continue to cover the downward mFRR reserve capacity 

needs.  

The analysis for the non-contracted aFRR balancing means demonstrates that no substantial volumes of aFRR non-

contracted balancing energy bids can be predicted at this point in time. This is explained by the fact that the available 

data was limited to only 9 months (as from the implementation of the new product design at the end of September 

2020) while during this period largest part of the time, no or very limited volumes are available, particularly for upward 

aFRR. Conclusion is that at this point, no potential for predicting the available non-contracted aFRR balancing 

means can be confirmed. 

In a fourth and final step, Elia proposes a roadmap to pursue a dynamic calculation of the balancing means. In first 

instance, a follow-up study is needed taking into account new system evolutions in the calculations of the potential 

being the explicit bidding of mFRR, the 12.5 minute full activation time for mFRR and the connection to the European 

balancing platforms for mFRR and aFRR. These modifications are expected to have an effect on the results, although 

it is currently very uncertain to which extend. As the last of these modifications will only be implemented in the final 

quarter of 2022, and more than a year of data is needed to conduct meaningful analyses, this update can only be 

conducted the soonest in 2023 or 2024. However, while awaiting the results of this analysis, expecting to confirm the 

potential, Elia proposes to already analyze procurement aspects of a dynamic allocation in 2022. This study will focus 

on the possibilities and impact of partially / intermittently reduce balancing capacity procurement on mFRR. 
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1. Introduction 

1.1. Context  

Market players are responsible for balancing injections and offtake in the system. As represented in (Figure 1), they 

currently nominate an energy portfolio one day in advance (day-ahead) that guarantees an equilibrium and, by moving 

closer to real-time, resolve any imbalance in their portfolio. It is therefore necessary for the market to have sufficient 

flexibility, both intra-day and real-time, to compensate for forecast errors in generation, in particular with regard to 

renewable energy sources and offtake. In addition, the flexibility available in the system must always allow for the loss 

of power plants (unavailabilities known a day advance, as well as an unforeseen unavailability after day-ahead)1.  

 

Figure 1 : Time horizons of flexibility (Elia’s adequacy and flexibility study 2021) 

The role of the transmission system operator in managing flexibility is complementary to the market’s role, because it 

neutralises the residual imbalance between injection and offtake that is not covered by market players. By means of 

the imbalance settlement tariff, Elia incentivises the market to adhere to their balancing responsibility as much as 

possible. This imbalance tariff is driven by the cost of activating balancing energy to resolve the residual system imbal-

ance, both in an upward (to deal with energy shortage) and downward (to deal with energy surplus) direction. Due to 

this ‘reactive’ balancing mechanism, a large part of the required flexibility is delivered by intra-day markets and real-

time actions and not by Elia. 

TSOs use reserve capacity to cover the residual system imbalance as represented in Figure 2. If an imbalance in the 

system occurs, this results in an increase or decrease in system frequency. Because the control zones of the ENTSO-

E network - also called the Load Frequency Control (LFC) blocks of which the Elia LFC block represents the Belgian 

                                                           

 

 

1 Note that discussions are ongoing relating to the removal of the requirement that requires market parties to communi-

cate a portfolio in balance in the day-ahead time frame. This is expected to enhance flexibility management, moving 

further towards the real-time (cf. Elia’s Public consultation on the proposal of amendment of the T&C BRP on elia.be) 

 

https://www.elia.be/en/public-consultation/20210615-public-consultation-on-the-proposal-of-amendment-of-the-tandc-brp
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geographical area - are connected, a frequency disturbance impacts the entire synchronous zone. For this reason, the 

Frequency Containment Reserve (FCR) must restore the balance between the power provided and the power supplied. 

It is used to stabilize the frequency at a level greater or smaller than the initial frequency, rather than balancing the Elia 

LFC block. 

 

Figure 2: Schematic overview of the activation of operating reserves 

The Frequency Restoration Reserve (FRR) must free up the FCR of the synchronous zone to prevent network insta-

bility, or even a failure of the entire electricity system, in the event of additional system imbalances. Each control area 

is therefore obliged to maintain its balance which is monitored by means of quality criteria assessing the Area Control 

Error (ACE), i.e. the real-time deviation between measured and scheduled cross-border exchanges on a quarter-hourly 

(and even on a minute-by-minute) basis.  

Unlike the FCR, the FRR ensures that the frequency in the synchronous zone is restored, and that the control zone is 

re-balanced. The automatic FRR (aFRR) is mainly used to compensate for short and random imbalances. The manual 

FRR (mFRR) serves as compensation for long, persistent and/or very extensive imbalances. 

 aFRR must be activated automatically within 30 seconds and must be fully available within 7.5 minutes. Note 

that Elia is investigating the possibility of reducing this down to 5 minutes; 
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 mFRR is manually activated and must be fully available within 15 minutes; this is due to be reduced to 12.5 

minutes in 2022.  

1.2. Reserve capacity requirements in Elia’s LFC block 

The required FCR volume is dimensioned by ENTSO-E for the synchronous area of continental Europe. It is calculated 

on the largest contingency, currently the loss of 3000 MW, complemented by a probabilistic analysis. This volume is 

allocated to the corresponding LFC blocks according to their weight (in terms of consumption and generation) in the 

synchronous zone. The methodology is specified in the synchronous area operational agreement and is approved by 

all relevant regulators. The FCR capacity in Belgium is 87 MW in 2021. 

The required FRR reserve capacity is dimensioned by Elia for its LFC block. First the needs are determined 

with a methodology presented in Elia’s LFC block operational agreement2. As from February 3, 2020, Elia im-

plemented a daily dynamic dimensioning for up- and downward FRR needs. The volumes are thereafter allo-

cated towards the different products for balancing capacity with a methodology presented in the LFC Means2.  

 

 Dynamic dimensioning methodology for the FRR needs 

As required by Article 157(2)b of the Commission Regulation (EU) 2017/1485 of 2 August 2017 establishing a guideline 

on electricity transmission system operation (hereafter referred to as “SOGL”), ELIA determines the positive and neg-

ative FRR needs based on a combination of a probabilistic and deterministic methodology (Figure 3). The probabilistic 

methodology is based on estimating the imbalance risks for each quarter-hour of the next day and determining the 

required reserve capacity on FRR to cover 99.0% of the imbalance risks, i.e. the 99.0% percentile of the probability 

distribution curve of the positive and negative LFC block imbalances. The probabilistic method is based on machine 

learning algorithms relating the imbalance risk to day-ahead predicted system features such as renewable generation, 

demand, weather conditions, as well taking into account the imbalance risks due to forced outages of available power 

plants and the Nemo Link interconnector.  

                                                           

 

 

2 Published on https://www.elia.be/en/electricity-market-and-system/system-services/keeping-the-balance 
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Figure 3: Calculation process of the FRR/aFRR/mFRR needs 

In parallel, Elia considers the dimensioning incident by means of a deterministic methodology. This method has to 

ensure that the positive and negative FRR needs shall not be less than the positive and negative dimensioning incident 

of the LFC block, as required by Articles 157(2)e and 157(2)f of the SOGL. The dimensioning incident is defined by 

Article 3 of the SOGL as the highest expected instantaneously occurring active power imbalance within a LFC block in 

both positive and negative direction. Finally, Elia applies an additional minimum threshold to ensure that the required 

positive and negative reserve capacity is sufficient to cover at least the positive and negative historic LFC block imbal-

ances for 99.0% of the time in order to be in line with Articles 157(2)h and 157(2)i of the SOGL.  

Both methodologies are used in parallel to calculate the positive and negative FRR reserve capacity required for every 

quarter-hour of the next day. The required reserve capacity for each quarter-hour is determined based on the maximum 

value of the deterministic and probabilistic methodologies. The result is expressed in periods of 4 hours by means of 

the maximum over all quarter-hours in this period. The calculation is conducted before 7 AM.  

Note that the mFRR needs are determined by subtracting the FRR needs with the results of a ‘static’ aFRR dimension-

ing methodology for which the methodology and results are determined as well in the LFC block operational agreement. 

Note that Elia presented at the end of 2020 its proposal for a ‘dynamic’ aFRR dimensioning, based on the risk for aFRR 

activations for the next day. Similar to the FRR needs, this risk is determined by means of machine learning algorithms 

trained on historic system conditions. The main advantage of these dynamic methodologies is that they allow to mini-

mize reserve capacity needs by adapting the reserve needs to the risk of the system.  

Methodology to determine the FRR means to be contracted 

In compliance with Article 32 of Commission Regulation (EU) 2017/2195 of 23 November 2017 establishing a guideline 

on electricity balancing, hereafter referred to as “EBGL”, Elia conducts an analysis on optimal provision of reserve 

capacity. This analysis shall take into account the following options for the provision of reserve capacity:  

 procurement of balancing capacity within control area and exchange of balancing capacity with neighboring 

TSOs, when applicable; 

 

 sharing of reserves, when applicable; 
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 the volume of non-contracted balancing energy bids which are expected to be available both within their con-

trol area and within the European platforms taking into account the available cross-zonal capacity.  

On an ‘ad hoc’ basis, Elia determined the share of non-contracted balancing energy bids and sharing of reserves which 

can be accounted as ‘firm’ in the determination of the balancing capacity to be procured. 

Following this ‘static’ analysis, the aFRR balancing capacity is always equal to the aFRR needs (taking into account 

the absence of aFRR sharing and the limited potential of non-contracted energy balancing bids). The aFRR capacity 

is determined symmetrically meaning that the downward reserve capacity is equal to the upward reserve capacity. In 

contrast, the upward mFRR needs are assumed to be partially covered with the sharing of mFRR but not by non-

contracted balancing energy bids after showing limited potential, at least when analyzed on a ‘static’ basis. In contrast, 

the downward mFRR needs are assumed to be fully covered with sharing of mFRR and non-contracted balancing 

energy bids. More information can be found in Elia’s LFC Means2.  

1.3. Trends and evolutions  

Increasing shares of variable renewable generation sources such as wind and solar power, characterized with a 

variable generation and limited predictability, were expected to impact the LFC block imbalances and TSO reserve 

capacity requirements. These trends incentivized Elia to re-inforce its ‘reactive’ balancing market design, providing 

incentives to market players to balance their portfolio or help restoring the system balance. This balancing market 

approach seemed rather succesful maintaining stable LFC block imbalance and Area Control Errors levels, despite 

increasing renewable generation (Figure 4). 

 

Figure 4: Evolution of the LFC block imbalance (SI), Net Regulation Volume (NRV) and Area Control Error (ACE) in view of increasing renew-

able generation (wind and solar) 

These stable LFC block imbalance levels allowed, with help of its dynamic dimensioning approach to maintain stable 

reserve capacity needs and limit the impact of renenwable generation on ancillary service costs. In contrast, contracted 

balancing capacity requirements were even reduced and downward mFRR procurement is avoided by means of taking 
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into account cross-border flexibility (by means of mFRR reserve sharing) and non-contracted balancing energy bids to 

the extend possible.  

 

Figure 5: Evolution of contracted balancing capacity requirements between 2012 and 2021 

Nevertheless, recent studies of Elia (MOG 2 system integration study, aFRR dimensioning study and Adequacy and 

flexibiltiy study) put forward increasing reserve capacity needs towards the future. Under a referene scenario with 

improving performance of market players to balance their portfolio, FRR needs are expected to increase towards 

1246 MW towards 2028. This is explained by increasing renewable generation, in particular due to increasing shares 

of offshore generation. Obviously, further enabling the ability of market players to balance their portofolio and the 

system is required to keep this inrease under control. 

 

Figure 6: Reserve capacity projections between 2022 and 2032 (Elia’s MOG 2 System Integration study, 2021) 

Besides stabilising the FRR needs, the procurement cost of balancing capacity can be managed by increasing the 

share of non-contracted balancing means, i.e. through reserve sharing or non-contracted balancing energy bids. These 

shares are already increased by means of a reduction of 250 MW of upward mFRR (following the expected availability 

of sharing) and downward mFRR procurement (following availability of FRR sharing and non–contracted balancing 

energy bids, including renewable flexibility). Nevertheless, this still follows a ‘static’ calculations analyzing available 
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capacities observed over the last two years. To further enable the contribution of this non-contracted capacity whenever 

sufficiently firm, and reduce balancing capacity to be procured where possible, Elia investigates in this study the 

potential of dynamic calculation where the availability of non-contracted balancing means are predicted for the next 

day, in order to be taken into account accordingly. 

1.4. Scope and Objective 

The objective of this study is the development, testing and validation of a method for forecasting the volume of non-

contracted balancing energy offers available within Elia's LFC Block. The timeframe for this prediction should allow this 

capacity to be reliably taken into account in a daily calculation of balancing capacity to be purchased (in the context of 

daily dynamic sizing of reserve requirements).  

The scope of the study is therefore limited to confirming the possible to develop a successful method to predict this 

capacity with an acceptable accuracy. Only when the potential is confirmed, several follow-up analyses will be required 

on :   

• the balancing energy exchange platforms for aFRR and mFRR which are planned to be implemented in 

2022. It will therefore not be possible to quantitatively determine the impact of cross-border balancing energy 

bids in this study. Note that the volumes which will be available on the European platforms are subject to a lot 

of uncertainty and relevant volumes can only be determined by means of a return on experience.  

• the effect of recent and foreseen product developments for aFRR and mFRR which are not (fully) repre-

sented yet in the available observations. For mFRR, explicit bidding and a reduction of the full activation time 

foreseen in 2022 will likely have an impact on the available volumes. For aFRR, the new product design was 

only launched in October 2022 and suffered of teething problems. Although Elia will conduct is best efforts to 

make the methods as robust as possible, the algorithms are likely to be updated after a return on experience 

on these evolutions 

• on the procurement aspects of a dynamic calculation of the available FRR means. While this study fo-

cuses only on the ‘predictability’ of non-contracted balancing means this analysis will be an important mile-

stone towards implementation. 

For the above-mentioned reasons, focus of the study is also not on optimizing the machine learning methodologies. 

Aim is to find and develop the algorithm which can provide an acceptable prediction while the final calibrating the 

algorithms will need to be conducted just before or during the final implementation phase, taking into account the above-

mentioned evolutions.  

1.5. Approach  

The investigated methodology is based on two general principles: 
 

1. the calculation has to be conducted as close as possible to real-time: the closer the prediction available 

energy bids can be done to real-time, the higher the accuracy of the prediction. This due to the fact demand 

and renewable generation forecasts become more accurate closer to real time while market players can adapt 

their positions accordingly by means of intra-day markets or portfolio management. Obviously, the re-sched-

uling of generation, storage and demand impacts the remaining flexibility which can be submitted to the TSO 

as available non-contracted balancing energy bids.  
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2. the calculation has to be conducted before the balancing capacity procurement : in the FRR dimension-

ing, it was already explained that the dimensioning and procurement has to be conducted before the day-

ahead market closure to ensure the availability of balancing capacity to be procured. Which resulted in a time 

process with a procurement of the FRR balancing capacity at 9 AM D-1 (aFRR) and 10 AM D-1 (mFRR), and 

the publication of the dimensioning of the FRR needs before 7 AM D-13.  

In view of these constraints, it is proposed to align the dynamic calculation of the available FRR means (Figure 7). 

Implications of the above-mentioned approach is that the prediction can only be based on data which is available at 

4 AM at D-1 for every period of the next day, e.g. by means of system condition forecasts. Note that at the moment of 

prediction, 96 separate forecasts are made for every period of 15 minutes for the next day, which is the highest reso-

lution possible with current system data resolution. In a final step, this resolution will need to be transformed to the 

product length of 4 hours for aFRR and mFRR.  

 

 

Figure 7: Overview of the timing of a dynamic FRR means calculation 

 

In order to forecast the available FRR means for the next day, a machine learning methodology is pursued. Such 

methodology is based on training algorithms on historical observations representing data sets of system conditions and 

available FRR means. Elia implements best practices on implementing machine learning methodologies as depicted 

in the checklist in Figure 8. While point 1 and 2 are dealt with in Section 2 on data collection, point 3-5 are dealt with in 

Section 3 on the selection and implementation of the right methodology.  

 

                                                           

 

 

3 It is assumed for this study that the future aFRR balancing capacity procurements is at 9 AM D-1. Note that currently, 
the aFRR balancing capacity procurement organized through two auctions: one organized in D-2 at 4 PM and a second 
one D-1 at 9 AM.  



Elia | Study on the daily prediction of non-contracted balancing energy bids  

13 

 

 

Figure 8: Checklist of best practices on machine learning 

 

In view of the above-mentioned methodology, the structure in this report is built upon four steps (Figure 9). The first 

two steps are focusing on getting the data and methodologic aspects right: step 1 (Section 2) identifies the relevant 

system conditions (features) to successfully predict the non-contracted balancing energy bids (target). Step 2 identifies 

the statistical methodologies which might be successful in predicting the non-contracted balancing energy bids (Section 

3).  

The last two steps focus on the results and recommendations: step 3 presents the result of the different methodologies 

put forward providing an analysis of the best algorithm, but also giving insight in the potential volumes of non-contracted 

balancing energy bids (Section 4) while step 4 puts forward the planning for implementation (Section 5).  

 

 

Figure 9: overview of the different steps followed during the study  

 

• Collect largest possible set of relevant features in view of the outcome 
• Transformations of the features and treat adequately the missing data

1. Data collection, cleaning, transformation 

• Matrix of correlations between features and the outcome
• Matrix of correlations between the features mutually

2. Correlation study 

• Pre-selection of relevant categories in view of the problem type
• 1 simple methods is selected for quantitative analyses to find a minimum performance level (linear regression)
• 2 more complex models are selected for quantitative analyses to increase performance level (neural networks / random forests)

3. Model selection

• Based on a random split in training data (75%) and test data (25%)
• Based on k-fold cross validation (up to 20)

4. Set up learning environment 

• Justify performance indicators in view of the problem type : quantile loss function, reliability and average FRR means volume

5. Determine Performance indicators
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2. Data  

When implementing the machine learning methodologies, historic observations are used upon which the algorithms 

are trained to make predictions. These historic observations are categorized in target variables, i.e. the variables to 

be predicted, and features, i.e. input variables on the basis of which the target variables are to be predicted.  

In a first step of this study, the relevant target variables and features are identified. In a second step, correlations 

between the target variables and features, but also the features mutually are quantitatively investigated and repre-

sented in a correlation matrix. The objective is to identify the most promising features for calibrating the algorithms as 

a too large amount of feature can negatively impacts the performance of the algorithm in terms of accuracy, interpret-

ability or computational time.  

The pre-selection and the selection based on the correlation matrix is discussed in this section based on historical time 

series available between January 1, 2018 and February 28, 20214. The resolution of the data is, where possible, set at 

15 minutes which aligns with the highest available resolution of the target parameters5. When calibrating the algorithms, 

the time period of the selected features is updated towards July 1, 2019 until June 30, 2021 in order to conduct the 

simulations with the latest data available. 

2.1. Target variables 

Figure 10 categorizes the target variables, i.e. the variables which need to be predicted, into five categories. For aFRR 

non-contracted balancing energy bids (category 5), the target variable is based on the explicit bids received from 

market parties. This is implemented for aFRR as from October 2020, which allows to collect the relevant time series of 

up- and downward aFRR non-contracted balancing energy bids. As already explained before, the period which can be 

analyzed (October 2020 until February 2021) considers a relatively short period to analyze correlations. Even more 

problematic is that the product design still suffered from teething problems, and that most periods are characterized by 

low or negligible non-contracted balancing energy bids. 

In addition, largest part of the observed non-contracted balancing energy bids is provided with CCGT units, which is 

related to the fact that these units are scheduled for the provision of contracted aFRR balancing energy bids. Correcting 

the non-contracted volumes for these cases where these would not be available without the reservation of these units 

would even further increase periods with low or negligible non-contracted balancing energy bids. 

 

                                                           

 

 

4 Note that data related to aFRR balancing capacity procurement only starts as from 1st October and mFRR balancing 
capacity procurement as from 2nd February 2020 related to the ‘go live’ of the daily procurement.  

5 When the original time series have a resolution lower as 15 minutes, a re-sampling is conducted by means of an 
interpolation method, e.g. an hourly time series is transformed into quarter-hourly time series. 
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Figure 10: Categories of target variables 

In contrast, for mFRR non-contracted balancing energy bids, implementation of explicit bidding for mFRR is only 

planned in 2022, which leaves no other choice than to resort to current implicit calculations where available bids are 

calculated by Elia, based on day-ahead and intra-day schedules of large generation units and pumped-hydro storage6, 

taking into account the unit’s scheduled availability, and minimum and maximum power levels.  

An analysis of the available volumes in 2020 is shown in Figure 11, presenting that upward volumes are pre-dominantly 

delivered with pumped-hydro storage (PHS) and CCGT units. It is however to be noted that the available volumes of 

pumped-hydro storage are uncertain due to implicit bidding, while the upward volumes provided by CCGT are overes-

timated following accounting capacity during unscheduled periods. The contribution of other technologies is relatively 

small. In contrast, the downward volumes are pre-dominantly delivered with pumped-hydro storage, CCGT units and 

wind power.  

The total non-contracted mFRR capacity (category 4) is composed out of different categories:  

 the available regulation capacity (category 1), as published on the website of Elia. This includes all units 

larger than 25 MW, formerly referred to as CIPU units, except from the pumped-hydro storage units. The 

available capacity is calculated by Elia by comparing the last generation schedules with the minimum / maxi-

mum power levels. Note that other technical constraints such as power ramp rates and start-up times are not 

taken into account and may therefore give a too optimistic view on the available mFRR. For this reason, and 

because CCGT units provide a large contribution to the available capacity, the capacity of the CCGTs is 

corrected by excluding capacity from units for which the last schedule indicates that the unit is not foreseen 

to be dispatched at that moment. The above-mentioned capacity also includes energy bids delivered by ‘lim-

ited controllable’ technologies representing units with some additional technical constraints (e.g. combined-

                                                           

 

 

6 DPSU formerly referred to as CIPU units falling under the bidding obligations following Article 248 of the Federal Grid 
Code. 
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heat and power, wind power and nuclear power). The time series also includes explicit bids from smaller units 

(including energy constrained units), formerly referred to as non-CIPU units (‘Bidladder’), but this adds no 

significant volumes.  

 

Figure 11: Available regulation capacity (including pumped-hydro storage) per technology in 2020 

 

 the available pumped-hydro storage capacity (category 2), as these are not included in the available reg-

ulation capacity published by Elia. This flexibility is calculated by comparing the scheduled injection or off-take 

with the scheduled availability and maximum and minimum power levels of the pumps and turbines. Similar 

to the LFC Means calculations, energy limits are taken into account, though in simplified way assuming re-

maining upward capacity only contributes at night (between 4 AM and 8 AM) and downward capacity only at 

day (between 8 AM and 4 AM). Developing a specific model for storage is complex and out of scope of this 

study, mainly since such model would become irrelevant after the implementation of explicit bidding in 2022. 

For this reason, a sensitivity analysis will be conducted on this target variable with a case where no energy 

constraints are accounted (assuming there is always some remaining energy for pumping or generation after 

day-ahead, and a case where no remaining energy is assumed. Both extreme cases are probably not repre-

sentative for reality but allow to understand the impact of pumped-hydro storage on the final result.  

 

 thirdly, the non-contracted balancing energy bids are complemented with the available capacity on reserve 

sharing (category 3). This is represented by the available transmission capacity after intra-day, and thus 

available for the activation of reserve sharing, and capped at 350 MW per border, being the commercial value 

of each of Elia’s four reserve sharing agreements with RTE, Tennet, NGESO and Amprion (as From Novem-

ber 2020). Finally, legal limits following the system operation guidelines are taken into account, determined 

around 312 MW (30% of the dimensioning incident) for upward reserves and around 550 MW / 0 MW for 

downward reserve (determined as the difference between the dimensioning incident and the probabilistic di-

mensioning). The value varies between 550 MW if Nemo Link is scheduled in export or undecided, and 0 MW 

if it is scheduled in import or maintenance, as currently specified in the LFC block operational agreement.  

Note that due to the above-mentioned characteristics of the data, the non-contracted mFRR capacity equals the FRR 

capacity, i.e. including capacity which can also be used for providing non-contracted aFRR balancing energy bids.  

As explained earlier, predicting the mFRR sharing capacity in day-ahead is not the focus of the study but included to 

provide a complete view on the total potential. Moreover, as explained in Section 1.4, optimizing this algorithms is not 
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useful before the implementation of the EU balancing energy platforms. The machine learning algorithms and selected 

features will therefore not be optimized for reserve sharing potential. Note that for each category on mFRR, capacity is 

predicted by means of separate models for up- and downward direction. 

2.2. Features 

An analysis is conducted towards the potential value of all known time series which could potentially be used as input 

variables or features for predicting the target variables. These will be presented by means of different categories as 

shown in Figure 12. It is stressed again that only the data available at the moment of prediction can be used as input 

for the model. For this reason, focus is put on forecasted system conditions, i.e. predicted values available in day-

ahead, before the day-ahead market closure. Typical examples are wind power and demand predictions. 

 

 

Figure 12: Overview of investigated features  

In contrast, time series of observed system conditions, or information available after the prediction can only be taken 

into account by means of ‘lagged’ values of the previous day. Such can be considered as a very simplistic forecast and 

the predictive value is therefore rather low in general. Nevertheless, such approach can make sense when there is an 

autocorrelation between the values and those of the previous days. In general, when a dedicated forecast is available, 

this feature is used above the lagged actual measured as it expected that the forecast will give a better performance.  

2.2.1. Demand features 

The demand in the LFC block can impact the schedules of generation, demand, storage and interconnectors which 

impacts the available flexibility in the system. For this reason, the day-ahead “Total load forecast”, available on Elia’s 

data download page, is analyzed. This time series includes all electrical loads on the Elia grid and in underlying distri-

bution networks, including electrical losses, and is estimated based on a combination of measurements, computations 

and extrapolations of injections of power plants, including generation in the distribution networks. Imports on borders 

are added. Exports on borders and energy used for energy storage are deducted.  
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This data is complemented with the estimated “Elia grid load” available on Elia’s data download page. The Elia-grid 

load is based on real injections into the Elia grid. It includes the measured net generation of the local power stations 

that inject power into the Elia grid, the net inflows from the distribution network to the Elia Grid and the net import on 

borders. Exports on borders and energy used for energy storage are deducted.  

2.2.2. Generation features 

Flexibility in the system can be impacted by the generation schedules of conventional generation units. For this reason, 

in first instance, the “Available Capacity Forecast by Unit”, available on Elia’s data download page is analyzed. For 

DPSU facilities, formerly referred to as CIPU (Contract for the Injection of Production Units) and with an installed power 

> 100 MW, this gives an overview of the forecasted capacity, by production unit, for a period extending from one day 

ahead to the end of the current year. Note that the generation schedules themselves are not included in the analysis 

due to the lack of forecasts, and that the correlations with the ‘lagged’ values will be outperformed by taking into account 

a price forecast (cf. Section 2.2.4). 

Solar, wind power generation and decentralized generation (run-of-river hydro, combined heat-and power,…) profiles 

can impact the available flexibility in the system directly, by means of downward regulation capabilities, but also indi-

rectly by impacting the generation schedules of generation and storage units. For this reason, the day-ahead fore-

casted generation profiles for wind power and solar as published on Elia’s website are used. For wind, an additional 

categorization is made between connection level (transmission or distribution level) and location (offshore or onshore) 

For the day-ahead decentralized generation, available data at Elia is used.  

2.2.3. Storage features 

Pumped-hydro storage is known to be a large contributor to the Belgian system’s flexibility. In first instance, Day-Ahead 

and intra-day nominations for PHS, disaggregated by plant and unit are used from Elia’s available data. Nominations 

include the dispatched power, and the maximum and minimum power levels. However, as no forecasts are available, 

the values of the previous day are used. In addition, the unit’s availability level, similar to the conventional generation 

features, is taken into account.  

2.2.4. Electricity market features 

Available flexibility is expected to be related to the day-ahead electricity price as it drives the generation, storage and 

demand schedules and therefore the available flexibility after-day-ahead. For this reason, the “forecasted day-ahead 

market price” is taken into account based on a forecast tool available at N-SIDE. The tool is based on a specific 

machine learning algorithm taking into account various local and regional features. In addition, as a benchmark, the 

“actual observed day-ahead market price” is included as well by means of the lagged value of the previous day. 

Finally, these features are complemented by means of the relation with the intra-day market by taking into account a 

transformation on the difference of the ‘lagged’ actual day-ahead and intra-day (weighted average) market price. 
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As gas prices and CO2 prices are relevant for the dispatch of gas-fired thermal units, both gas and CO2 prices are 

taken into account. As no forecasts were available, the last values known before the day-ahead market closures based 

on the settlement prices (DA or Weekend products) published by the ICE7.  

2.2.5. Balancing market features 

To represent balancing market features, real-time imbalance volumes and imbalance prices are taken into account, 

as published on Elia’s data download page. In theory, these could play a role if they could be predicted by market 

players and used to re-schedule their portfolio. Also aFRR / mFRR contracted / offered volumes and capacity prices 

per CCTU (and per gate) are analyzed to capture potential correlations between target variables and the reservation 

prices of aFRR and mFRR of the previous day. Due to the lack of forecasts, the values of the previous day have been 

used. 

Also the autocorrelation with the target feature is taken into account by including the ‘lagged’ value of the available 

regulation capacity, i.e. per type, technology and fuel type.  

2.2.6. Weather condition features 

Weather features can have an indirect impact on the available flexibility in the system through their influence on demand 

and renewable generation. For wind speed and solar irradiation predictions, these weather conditions are already well 

captured by solar power and wind power forecasts. For this reason, only the day-ahead forecasted temperature is 

taken into account. Furthermore, real-time measurements are not considered as useful because the ‘lagged’ values of 

the previous day are expected to provide less accuracy compared with specialized forecast tools. 

2.2.7. Cross-border transmission capacity features 

In first instance, the relation between the target variables and the “day-ahead net transfer capacity” available as 

published on Elia’s data download page has been considered. For the border between Belgium and the United King-

dom, Day Ahead net transfer capacity (NTC) is the Day Ahead forecast transfer capacity agreed on the specific border, 

calculated using a CNTC method (Coordinated NTC). These NTC Day Ahead values are reported at the boundary of 

the Elia control area, on the Belgian side of the Nemo Link HVDC cable. Note for the other borders, available trans-

mission capacity is determined as part of the flow-based market and no specific features are available to take into 

account. As an alternative, the week-ahead net transfer capacity could be considered but this is fount to capture no 

new correlations. 

Note that the day-ahead import / export schedules are not considered as they are expected to only have an indirect 

value as due to the intuitiveness of Euphemia’s results: the schedules are related to day-ahead prices which is already 

                                                           

 

 

7 https://www.theice.com/solutions/data 
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included in the analysis by means of a forecasted price. Furthermore, as a lag would have to be applied because these 

are not available at the time of the forecast. 

In addition, as the available non-contracted capacity through sharing is taken into account, the observed “available 

transmission capacity after the last intra-day gate” for each electric border (France, The Netherlands, and United 

Kingdom). Import and export are treated as separate features. This information is not known at the time of prediction 

which is the reason to work with the values of the previous day (D-2). Note that for the feature selection phase, the 

border with Germany is ignored at this point8 as data was only available as from November 2020. 

2.2.8. Time features 

Time features such as time within the hour, hour of the day, day of the week and month of the year are investi-

gated as these might show a relation to the target features (e.g. day versus night). These are transformed into contin-

uous variables in order to align with the other time series used in this study. The transformation is conducted by means 

of sinusoidal - sin(x) - and cosinusoidal - cos(x) - functions. 

2.2.9. Transformations on features 

Sometimes, the performance of machine learning algorithms can be improved by pre-processing features by means of 

mathematical operations, also known as feature engineering This can reveal correlations which remain undiscovered 

when only looking at the correlation between the target and the original feature. However, as this is relevant for the 

feature selection process, it is to be noted that the more advanced machine learning methodologies such as artificial 

neural networks or random forests are generally able to capture more complex non-linear relations.  

In first instance, such transformations are conducted based on market knowledge. The day-ahead predicted residual 

demand is taken as a first transformation by subtracting the day-ahead predicted solar and total wind power from the 

total load as it is known that this indicator plays a large role on the scheduling of generation, storage and demand units. 

Gradients transformations are also conducted on all RES generation and load forecast as well as on residual demand; 

this is performed by subtracting the value of the feature from the value in the previous period. It is also tested if aggre-

gating the up- and downward non-contracted balancing energy bids of the previous day gives a better relation to 

the target parameters compared to analyzing the up- and downward non-contracted balancing energy bids individually.  

Secondly, as part of good machine learning practices, polynomial transformations are conducted on every feature, 

as well as using ‘lagged’ values of each feature over the past 7 days.  

 

                                                           

 

 

8 The available ATC after intra-day on the border with Germany is later included in the simulations  
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In depth: capturing correlations between contracted and non-contracted mFRR balancing energy bids 

An additional analysis is conducted to understand if the potential relation between the available non-contracted 

balancing energy bids and the contracted capacity and if this relation can be taken into account by machine learning 

algorithms. The figure below shows how mFRR balancing capacity (February 4, 2019 to January 31, 2021) is 

currently mainly provided with smaller units (formerly known as non-CIPU), gas turbines (GT) and turbojets (TJ) 

and pumped-hydro storage (PHS). Note that :  

 The non-CIPU is currently not providing any non-contracted reserves 

 PHS, GT and TJ are assumed to provide mFRR from stand still  

 GT-CHP is bound to specific technical constraints 

 CCGT is negligible in providing reserved mFRR 

 

It is previously shown that largest part of relevant capacity for non-contracted upward balancing energy bids is 

provided with GT + TJ + PHS + CCGT. While the last does not play a substantial role in balancing capacity, the 

first three are able to provide mFRR from ‘standstill’ : analysis shows periods where GT and TJ provide both non-

contracted and contracted mFRR in Elia’s available regulation capacity while all mFRR providing gas turbines and 

turbojets are found to be provide non-contracted mFRR while not bidding any contracted mFRR. However, it has 

to be noted that non-contracted balancing capacity is currently calculated by Elia under ‘implicit bidding’ and impact 

of explicit bidding and evolution of full activation time towards 12.5 minutes can the non-contracted volumes but 

difficult to quantify this impact. For these reasons, it is expected that, at least in theory, replacing contracted 

with non-contracted capacity should not have a negative effect on the operational availability of non-con-

tracted capacity delivered. However, which does not mean that former mFRR providing units may leave the 

market (‘peakers’) which relates to adequacy discussions. Without experience with explicit bidding, such conclu-

sions are very preliminary as other unknown elements can play a role of which Elia is not aware of. 

Furthermore, the machine learning are assumed to be able to capture relations between the offered, con-

tracted capacity per BSP and the available non-contracted balancing energy bids per unit. Further feature 

engineering can improve the strength of the relation. In practice, in the current market, the relation remains too 

weak to capture any relations today. Further investigation is possible in a later stage when system evolutions 

would demonstrate a potential relation between contracted and non-contracted capacity. 
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2.3. Correlation matrix 

A correlation matrix is developed depicting all linear correlation between the above mentioned features and the target 

variables, as well as the different features and target variables mutually. Based on this correlation matrix, a selection 

of features is made to calibrate the algorithms. Full correlation matrices are available but cannot be depicted as a whole 

in this report due to the high number of features investigated (164 in total, including feature transformation). For this 

reason, this report discusses the summary for the correlation between target variables and features for each of the five 

categories.  

It should be noted that in the correlation matrices presented, the name of the time series ending with “d-1” or “d-2” 

denote that this realized value has been lagged. For instance, the feature prices_da_market_d-1 correspond to the 

day-ahead market price for Belgium from the previous day. Furthermore, it is clarified that the residual load is computed 

using the difference between forecasted values (e.g. load, wind production, solar production) such as this information 

is available at the time of forecast. Note that a clarifying list of acronyms of variables is included in Annex.  

2.3.1. Category 1 : available regulation capacity  

Figure 13 presents the largest correlation coefficients for the up- and downward available regulation capacity (category 

1) as explained in Section 2.1. The total available regulation capacity is the sum of ‘controllable’ capacity (IC / DC) and 

‘limited controllable’ capacity (ILC / DLC). While the downward ‘limited controllable’ capacity is mainly originating from 

wind power bids, there are almost no upward ‘limited controllable’ bids observed. 

For the upward capacity, it is found that the available regulation capacity of the previous day: total (0.68), gas-fired 

(0.68) and CCGT (0.67) show the highest correlation coefficients, as well as the forecasted residual load minus the 

available nuclear and gas-fired capacity (0.59). Other relatively high correlations are found with the day-ahead price 

forecast (0.50), the residual load minus the nuclear generation (0.53), the forecasted day-ahead price (0.50), residual 

load of the previous day (0.47), the day-ahead prices of the previous day (0.43) and the available regulation capacity 

of the previous day : total (0.40), gas-fired units (0.40), CCGT (0.40) and wind power (0.34). Finally, and to minor 

extend, there is also a correlation with the limited controllable capacity of the previous day (0.24) and the forecasted 

wind power (0.33). Note that these results are the same for the subcategory of ‘controllable’ capacity as there are 

almost no ‘limited controllable’ volumes for upward. 

For the downward capacity, it is found that the available regulation capacity of the previous day: total (0.58), gas-fired 

units (0.58) and CCGT (0.58) show the largest correlations. Also the ‘limited controllable’ available downward regulation 

capacity from wind power of the previous day (0.54) and the wind power forecast (0.47) show a large correlation. This 

is due to the substantial contribution of the ‘limited controllable” capacity through wind as show by the correlation 

coefficients from this sub-category. Other significant correlations are found with the available limited controllable ca-

pacity of the previous day, the forecasted day-ahead prices and the day-ahead price of the previous day, the residual 

load minus nuclear generation, the available regulation capacity of the previous day : total (0.40), gas-fired (0.40), 

CCGT (0.40) and wind power (0.34) play a less significant role.  
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Figure 13: correlation matrix for the available regulation capacity (category 1)  

2.3.2. Category 2: available pumped-hydro storage non-contracted balancing energy 

Figure 14 shows that the available upward pumped-hydro storage non-contracted balancing energy shows a high cor-

relation with the available upward non-contracted capacity of the previous day (0.64). Also the residual load of the 

previous day (0.46), the total load forecast 0.46), the time of day (0.36) and the forecasted day-ahead market price 

(0.34) show relatively high correlations. Low correlations are observed with the downward non-contracted capacity of 

the previous day (0.21) and the time of day F1 (0.25), which refers to the transformation to a continuous function by 

means of the co-sinus function.  

For the downward side, the downward non-contracted capacity of the previous day (0.46) shows the highest correla-

tions. In contrast, the upward non-contracted capacity of the previous day (0.22), the total load forecast (0.13), the time 

of day (0.23) and the time of day F1 (0.20) show relatively low correlations. 
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Figure 14: correlation matrix for the available pumped hydro storage capacity (category 2) 

2.3.3. Category 3 : available mFRR reserve sharing 

Figure 15 show the correlations for the available mFRR reserve sharing, represented by the available transmission 

capacity after intra-day with France, The Netherlands and United Kingdom. Correlations are found to be relatively weak 

compared to previous categories. For the export side, using the available sharing on export with France gives the 

highest correlations (0.29). The main reason for the low correlations is that the available transmission capacity on which 

the available sharing depends on regional features are not included in the scope of this study. 

Note that for individual borders, relevant correlations are found for the United Kingdom, where a correlation is found to 

exist between the available sharing on export and the lagged values (0.68), as well as gas prices (0.39), together with 

the forecasted day-ahead electricity market price for Belgium (0.29). 
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Figure 15: correlation matrix for the non-contracted total mFRR balancing means (category 4)  

2.3.4. Category 4: non-contracted mFRR balancing means 

Figure 16 shows that for the upward non-contracted mFRR balancing means, the largest correlations are found with 

the downward non-contracted mFRR balancing means of the previous day (0.50) and the time of the day (0.45). Other 

smaller correlations are shown with the total load forecast (0.17), the upward non-contracted balancing energy bids of 

pumped hydro of the previous day (0.18) and the available reserve sharing on Nemo Link for the previous day (0.14).  

For the downward non-contracted mFRR balancing means, a very large correlation is found with the downward non-

contracted mFRR balancing means of the previous day (0.78). Additionally, large correlations are found with the total 

load forecast (0.48), the non-contracted downward volumes provided by pumped-hydro storage during the previous 

day (0.47) and the time of day (0.46). Smaller correlations are found with the wind power forecasts (0.29) and the gas 

prices of the previous day (0.21).  
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Figure 16: correlation matrix for the non-contracted total mFRR balancing means (category 4)  

2.3.5. Category 5 : non-contracted aFRR balancing energy bids 

For the analysis on non-contracted aFRR balancing energy bids, the correlation matrix show that in general, the cor-

relation coefficients remain relatively low for the upward direction. The upward volumes seem to be impacted by the 

non-contracted upward balancing bids of the previous day (0.28), the incremental bids from pumped-hydro storage 

(0.23), the forecasted day-ahead price (0.18) and the total load forecast (0.11). 

In contrast, the correlations for the downward volumes are substantially higher and volumes are impacted by the down-

ward available regulation capacity of the previous day (0.47), the total load forecast (0.44), the non-contracted down-

ward balancing bids of the previous day (0.42) and to lower extend the forecasted day-ahead price (0.29), the decre-

mental bids from pumped-hydro storage (0.24) and the total wind power forecast (0.22). 
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Figure 17: correlation matrix for the non-contracted aFRR balancing energy bids (category 5) 

2.3.6. Selection of features  

The best features for each component of the targets have a correlation coefficient (abs. val.) around: 

 IC/DC: 0.68  

 PHS: 0.46 

 DLC: 0.94 

 ATC: 0.45 

Given the high linear correlations obtained, even linear models (such as a linear regression) should be able to generate 

relevant forecasts, and may compete against complex models. This analysis gives us a top candidate list of best fea-

tures for each target component. Those best candidates are used as a basis into the model to produce a simple and 

interpretable forecast. More features are added gradually.  

It should be noted that state-of-the-art machine learning models are able to assign themselves coefficients (or weights)  

to the different input features that the user provides for the training process, such as they automatically assign a rele-

vance on the provided information. This advocates for incorporating many features but note that this burdens compu-

tational time. For this reason, correlation analysis is used as a preliminary process where it is tired to create the most 

suitable feature framework for the model. In other words, the end goal is to train the different models using the, a-priori, 

highest correlated features which are available at the time of forecast.  
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On the other hand, not all relevant features show linear correlations with the targets and can be captured with a corre-

lation analysis. For this reason, it might, based on expertise and market knowledge, be justified to include additional 

features. The following table summarizes which final features have been used to predict each of the target values. 

 

CATEGORY 4. Up 

 
CATEGORY 4. Down  CATEGORY 5. Up  CAT EGORY 5. Down 

arc_dc_total_d-1 

total_load_forecast 

forecast_da_price_d-2 

time_day 

wind_total_day_ahead_forecast 

phs_freebids_upward_d-1 

phs_freebids_downward_d-1 

mFRR_total_volume_offered_d-1 

time_monthF1 

atc_fr_export_cap_d-1 

wind_tso_day_ahead_forecast 

atc_uk_export_cap_d-1 

atc_nl_export_cap_d-1 

gas_prices_d-1 

DOWN_and_sharing_d-1 

arc_ic_total_d-1 

total_load_forecast 

time_day 

phs_freebids_upward_d-1 

mFRR_total_volume_offered_d-1 

time_monthF1 

gas_prices_d-1 

atc_fr_import_cap_d-1 

atc_nl_import_cap_d-1 

atc_uk_import_cap_d-1 

UP_and_sharing_d-1 

phs_freebids_up-
ward_d-1 

phs_freebids_down-
ward_d-1 

aFRR_bids_up_d-1 

total_load_forecast 

time_day 

forecast_da_price_d-2 

arc_dc_total_d-1 

total_load_forecast 

aFRR_bids_down_d-1 

arc_ic_total_d-1 

wind_total_day_ahead_fore-
cast 

 

 

CATEGORY 2. Up CATEGORY 2. Down CATEGORY 3. up CAT EGORY 3. down 

arc_ic_total_d-1 

total_load_forecast 

time_day 

phs_freebids_upward_d-1 

time_monthF1 

arc_dc_total_d-1 

total_load_forecast 

forecast_da_price_d-2 

time_day 

wind_total_day_ahead_fore-
cast 

phs_freebids_upward_d-1 

phs_freebids_downward_d-1 

total_load_forecast 

time_day 

mFRR_total_volume_of-
fered_d-1 

time_monthF1 

gas_prices_d-1 

atc_fr_import_cap_d-1 

atc_nl_import_cap_d-1 

atc_uk_import_cap_d-1 

total_load_forecast 

forecast_da_price_d-2 

time_day 

wind_total_day_ahead_forecast 

mFRR_total_volume_offered_d-1 

time_monthF1 

atc_fr_export_cap_d-1 

wind_tso_day_ahead_forecast 

atc_uk_export_cap_d-1 

atc_nl_export_cap_d-1 

gas_prices_d-1 

 

 

CATEGORY 1. Up CATEGORY 1. Down 

arc_ic_total_d-1 

total_load_forecast 

time_day 

forecast_da_price_d-2 

time_monthF1 

arc_dc_total_d-1 

total_load_forecast 

forecast_da_price_d-2 

time_day 

wind_total_day_ahead_forecast 
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3. Methodology  

3.1. Machine learning method selection 

Figure 19 provides an overview of the different categories of machine learning methods. Focus in this study is on 

supervised learning methods which are typically used when dataset variables are labelled as features or outcome 

and which is the case in this application. Unsupervised learning methods are generally used when this information 

is not provided. However, this does not mean they cannot be used for a supervised learning problem as well. For 

instance, the k-means clustering is successfully implemented (in combination with a Nearest Neighbor algorithm) in 

Elia’s FRR dimensioning, where the outcome and features are also well defined. Reinforcement learning methods 

are used when an algorithm is trained based on dynamic interactions with an environment (typically used in robotics 

and gaming) and is out of scope of this study. 

In supervised learning, a distinction is made between regression and classification. Focus in this study is on regres-

sion, where the objective is to predict a numerical or continuous variables, in this case the available non-contracted 

balancing means (up- and downward aFRR / mFRR). Classification is generally used when predicting discrete varia-

bles although several algorithms can also be used for continuous variables. 

 

Figure 18: Overview of machine learning categories 

Figure 19 provides an overview of the most well-known algorithms used in industry. Most are supervised learning 

methods, but also a non-supervised learning method is listed (k-means). Although some of the methods are typically 

used for classification (cf. Decision Trees), all these methods can be used to solve regression problems. Note that an 

educative explanation of each algorithm type is beyond the scope of this study. The necessary information can be 

found in specialized literature. 
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Figure 19: Overview of the qualitative pre-selection of methods for the Proof of Concept 

Analyzing the performance of all different methods in a quantitative way is time consuming. Indeed, it requires building 

the model, and finding the right parameters, which is particularly demanding for the sophisticated methods such as 

support vector machines and artificial neural networks. Therefore, a pre-selection is made based on a qualitative se-

lection of these algorithms based on accuracy, simplicity and suitability. While the accuracy is preferably kept as 

high as possible, it generally goes at the cost of lower simplicity. The latter is related to interpretability which is important 

in the context of FRR dimensioning, a certain level of interpretability is required to justify ex post the dimensioning and 

procurement of FRR balancing capacity, since the reservation costs impacts the TSO’s costs for ancillary services, and 

so the transmission tariffs. For this reason, when two methods would score equally on accuracy, it would be advised 

to select the method with the highest simplicity. Finally, a third criteria used here is suitability for the selected problem 

which generally relates in this case to the ability to predict a certain percentile (e.g. 99% confidence) rather than a point 

forecast. 

The pre-selection puts forward a linear regression as less sophisticated methods. This methodology, very simple and 

intuitive, is generally used as a benchmark, demonstrating the minimum potential for the use of machine learning, This 

benchmark is complemented with a random forests and artificial neural networks, method which are more sophis-

ticated to further increase accuracy.  

Note that these two methods are selected above other advanced methods such as support vector machines and poly-

nomial regressions. Despite the fact that support vector machines are typically known for achieving high accuracy, 

they are also characterized by a complex parametrization and require a lot of computational time for training when 

working with large data sets, as it is currently the case in this study. On the other hand, the artificial neural networks 

are expected to also provide high accuracy as well, but with less complexity in the parametrization. In contrast, poly-

nomial regressions are found to be outperformed by random forests on accuracy and suitability, for the same level of 

simplicity. 
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3.2. Set up learning environment 

Figure 20 illustrates the allocation of available data over the training and test set. As recommended by good machine 

learning practices, the data is split randomly into a training set (75% of the data) and a test set (25% of the data). This 

test set will only be used for the final evaluation of the method, i.e. when computing the different KPIs.  

With training set, a 10-fold cross validation is conducted to test and find the parameter settings. The data set is divided 

in 10 folds or bins, of which one fold is used to assess the performance of the model. This exercise is then repeated 

10 times, with different folds, allowing to obtain each time a slightly different performance. Such approach allows to 

ensure the results are sufficiently robust helping to select the best parameter for the method.  

 

 

Figure 20: Illustration of a 10 fold cross-validation 

3.3. Determining the performance criteria 

The performance of the algorithms are assessed over the separate test set, i.e. data which is only used to assess the 

performance of the model, and not to train the algorithms, or calibrate the parameters. The first criteria is the reliability 

level which investigates the ability of the algorithm to determine the FRR means with a confidence level of 99.0%. In 

other words, 99.0% of the observed balancing means should be above the forecast level in order to avoid overestimat-

ing the available means. Note that theoretically, this reliability level should approach 100% in order to make sure that 

FRR needs are adequately covered but setting the reliability level this high would mitigate the potential of a dynamic 

methodology. If the test set shows that the reliability is below 98.9%, i.e. that the FRR means cover less than 98.9% of 

the sizing variable, the algorithm (or its parametrization) is discarded.  

For all algorithms matching the above mentioned criteria, the mean absolute error over the test set is used for further 

assessment. Due to the nature of the problem (assessing a risk rather than predicting a value), this mean absolute 
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value is calculated based on a quantile loss function. This quantile loss function9 compares the real-time observed 

value with the predicted 99.0% percentile values. If the value falls outside this [0%; 99%] confidence bandwidth, it will 

have a larger impact on the mean absolute error than if it falls within the interval. If it is found that another model on 

the same family (i.e. with a different parametrization) has already achieved a better result, the model is discarded. This 

process is conducted iteratively until the results converge to a certain mean absolute error which becomes difficult to 

further improve. 

Finally, the dynamic potential with a certain algorithm, if any exists, and a parametrization which achieve reasonable 

results, is assessed by means of the average forecast value, i.e. the average volume of available FRR means. The 

higher the available FRR means, the larger the dynamic potential, at least when above the static value. Note that further 

investigation, particularly for the sophisticated methods can still result in incremental improvements 

3.4. Calibration of the algorithms 

3.4.1. Linear regression 

A linear regression in one of the simplest machine learning methods (Figure 21, left), yet also one of the most used 

ones thanks to its simplicity and interpretability. The idea behind a simple linear regression is to find the line that fit the 

best on a cloud of points. From an algebraic point of view, a linear function (so two parameters a and b in the equation 

Y = a.X+b) is searched such that it minimizes the sum of the distances for every observation from this linear function, 

typically by means of an ordinary least squares method.  

To apply this method on FRR means forecasts, a multiple instead of a simple linear regression is used, which extends 

the simple linear regression with several explanatory variables (X1,…Xt) instead of just one, as in the previous example. 

In addition, a quantile loss function, instead of the ordinary least square method is used, in order to forecast a quantile, 

i.e. percentile value. By doing so, if the forecast aims at predicting a value that has to be below the observation 99% of 

the times, the quantile in the quantile loss function is set at 99%. In the case of the simple linear regression, instead of 

being “in the middle” of the cloud of points, the produced line will now be more or less above 99% of the points. This is 

referred to in the literature as quantile regression10. 

Along with its simplicity, the advantages of the linear regression is that there is no parameter configuration (i.e. besides 

finding the coefficients in the linear function). For these reasons, this type of method is frequently used as a bench-

marking method. One of the main advantages is that it also depicts the strength of the correlations which is useful to 

interpret the results. In general, these type of methods are less suitable when the features and outcomes show non-

linear relations, which are indeed also the case in this study. It is therefore expected that this benchmark method will 

be outperformed by the other methods.  

                                                           

 

 

9 Lq(pred, obs) = max[q(obs − pred), (q − 1)( obs − pred)] comparing the delta between the predicted value (pred) and 

observed value (obs) 

10 Koenker, R. (2005). Quantile Regression. Cambridge University Press. pp. 146–7. 
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Figure 21: Graphical illustration of a linear regression (upper left), a decision tree (lower left), a random forest (upper right) and neural networks 

(down right). 

3.4.2. Random forests 

Random forest (Figure 21, upper right) are based on building a large number of individual decision trees that operate 

as an ensemble. Ensemble methods are techniques that create multiple models and then combine them to produce 

improved results. In the present case: a random forest is an “ensemble method” since it creates multiple models (de-

cision trees) and combines them (into a forest). Decision tree algorithms (Figure 21, lower left) are built on “if-else 

statements” that can be used to predict a result based on data. Although these types of methods are typically used for 

classification problems (the models are then called classification trees), these are also widely used for regression 

problems, and hence referred to as regression trees. Here, because the available non-contracted balancing means 

deal with continuous variables, it concerns a regression tree. 

Each individual tree in the random forest produces a prediction, then a global prediction is reached (for instance by 

taking the average of all the prediction in the case of a continuous variable). These types of models generally provide 

a high performance while being versatile, and robust against different problems. Of course, complexity is larger as with 

the individual decision trees and this method also coming at a cost of less interpretability compared to the decision 

trees. A forest of quantile regression trees is used. 

The nodes are split based on a entropy-based method. After sensitivity analyses up to an amount of trees of 500 and 

the height up to 8, the number of trees in is specified at 220 (mFRR upward/mFRR downward) and 200 (aFRR up- and 

downward) while the height of each tree is specified at 7 for mFRR targets and 5 to aFRR targets. A large number of 
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small trees is a good way to avoid overfitting problems. A gradient boosting algorithm11 is used which builds the trees 

iteratively, and take into account the weaknesses of trees already built in each new tree. After sensitivity analyses 

between 0.05 and 0.80 is included on the learning rate and fixed at 0.1 (mFRR up/mFRR down) and 0.15 (aFRR up- 

and downward). This parameter is linked to the weight attributed to each tree for computed the final forest prediction.  

Note that due to relatively low amount of data and the low volume considered for aFRR means, the fine-tuning process 

was irrelevant (almost always the same result independently of the parameter selection). More data are needed for a 

relevant fine-tuning. The parameters below seems to be perform best on the available sample 

3.4.3. Artificial neural networks 

Artificial neural networks model the relationship between a set of input and output signals (Figure 21, lower right). The 

concept is that each neuron has inputs and produce a single output which can be sent to multiple other neurons. The 

neurons are stacked into different layers to produce the global network. After a training phase, a new input (a set of 

values for the different features) can be feed to the neurons on the first layer, those will produce an output that will be 

sent to the second layer of neurons, which can be send to the third layer, and so on. This process continues until it 

reaches the final layer that will output the final result, i.e. the prediction of the available non-contracted balancing 

means.  

To produce an output, a single neuron first takes as inputs some values computed on the previous layers, those inputs 

are combined into a weighted sum (the weight depends on the links that connect different neurons). Then the neuron 

adds a bias term to this weighted sum and passed the result through a (usually non-linear) activation function to produce 

its output12. The goal of the learning process is to determine the neuron’s weight and bias in order to minimize the 

observed errors when using the network. After the learning process, a specific value can be given to in first layer of the 

network (i.e. values for each feature) and the output of the last neuron is the forecasted outcome. 

Artificial neural networks are versatile learning algorithms which can be applied in nearly any learning task. They are 

often applied to problems where the input data and output data are well defined, yet the process that relates the input 

to the output is complex and hard to interpret due to the non-linear nature. These types of models are therefore com-

putationally intensive, slow to train and due to their difficult interpretability, sometimes referred to as a ‘black box’ 

methods.  

The neural network for this study is built on six sequential complete layers so every node of the layer number N is 

linked to every node of the next layer number N+1. Sensitivities up to 10 are assessed with a number of features per 

layer up to the amount of features investigated. A “relu” activation function (also known as “rectified linear unit”) is used 

for the layers except for the first and the last one for which a linear activation function is used. The ‘relu’ function is 

                                                           

 

 

11 Hastie, T.; Tibshirani, R.; Friedman, J. H. (2009). "10. Boosting and Additive Trees". The Elements of Statistical 
Learning (2nd ed.). New York: Springer. pp. 337–384.  

12 Artificial intelligence (3rd ed.). Addison-Wesley Pub. Co. 1992. 
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wildly used and allows to not activate all neurons at the same time which is computationally efficient13. Several sensi-

tivities are conducted to determine the amount of layers (between 5 and 10) and the amount of neurons per layer 

(between 5 and the number of features considered). The learning rate is a hyper-parameter that controls how quickly 

the weights are adapted to the problem. 

 

 Upward mFRR Downward mFRR 

Amount of layers 8 8 

Notes per layer 11, 11, 11, 11, 11, 11, 5, 1 11, 11, 11, 11, 11, 11, 5, 1 

Learning rate 0.10 0.10 

 

Before the training of the network, a Gaussian kernel initializer is used which allows to set up the initial weight randomly 

in the network, otherwise the learning process can suffer from unwanted and avoidable bias (for instance if we set up 

manually the weight of the network to zero). When training a neural network (i.e. adjust the weights in the network), an 

iterative method is used called the stochastic gradient descent14. Here, a stochastic gradient descent is applied which 

is based on adaptive learning rate per dimension (Adadelta)15 that have shown good results in practice16. Again, as the 

interest lays in quantile prediction rather than average point forecasts, a quantile loss function is used in the learning 

process.  

From a practical point of view, Keras is used to design the network which is a user-friendly framework for neural net-

works built on top of TensorFlow 2.0, an open source software library for Python. 

                                                           

 

 

13 LeCun Y., Bottou L., Genevieve B. O. and Müller K.-R. (1998). "Efficient BackProp". In G. Orr; K. Müller (eds.). Neural 
Networks: Tricks of the Trade. Springer. 

14 Bottou, L. (1998). "Online Algorithms and Stochastic Approximations". Online Learning and Neural Networks. Cam-
bridge University Press. 

15 Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (8 October 1986). "Learning representations by back-
propagating errors". Nature. 323 (6088): 533–536. 

16 Zeiler, Matthew D. (2012). "ADADELTA: An adaptive learning rate method".  
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4. Results 

4.1. Setting up the reference scenario 

4.1.1. Assumptions  

In order to compare the performance of several algorithms, and facilitate the interpretation of the results, a reference 

scenario is built for which simulations are conducted. The reference scenario targets to obtain representative results if 

predictions would have been made for 2021. 

 

 

Figure 22: Visual representation of the historic time period for training the algorithms  

A dataset has been constructed for the selected targets and features for the period from April 16, 2021 until April 15, 

2021 (Figure 22). This data was selected to represent the latest, and therefore most representative, data when con-

ducting the simulations during the summer of 2021, while avoiding the maintenance period of the pumped-hydro stor-

age units of Coo-Trois-Ponts between 15/4/2021 and 15/7/2021. During this exceptional planned maintenance, all 

pumps and turbines were set as unavailable17. As these units are expected to have significant impact on the results, 

and such events are rare, excluding these periods results in a better representativeness of the results. Nevertheless, 

one sensitivity is conducted for the period between July 1, 2019 and June 30, 2021 to assess the impact of this mainte-

nance event on the results. In contrast to the mFRR balancing means, the period between July 1, 2019 and June 30, 

2021 is used as reference period for the aFRR balancing means. This time period remains representative for the sim-

ulations on which is assumed to be hardly impacted by the maintenance of Belgium’s largest pumped-hydro plant.  

As explained in the previous sections, in order to further improve the representativeness of the results, a few corrections 

have been made to the mFRR target variables which are currently still calculated by Elia in an implicit way: 

 in the incremental bids, the available time series on Elia’s website (available regulation capacity) have been 

corrected by removing time periods where CCGTS are not scheduled (based on the latest nominations) since 

these plants are not able to provide mFRR in such situations.  

 

                                                           

 

 

17 One turbine of the six is foreseen remain in maintenance until 31/8/2021 (cf. ENTSOE-E Transparency Platform)  
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 In the decremental bids, the available time series on Elia’s website (available regulation capacity) have been 

corrected by taking into account the last nominations of wind power parks subject to bidding obligations (cf. 

subject to the Terms and Conditions Scheduling Agent) and upscaled towards 2021 by means of the expected 

incremental installed capacity between the observed time series and 2021. Note that a sensitivity is conducted 

without this upscaling in order to depict the effect of this extrapolation. 

As explained earlier, the reference scenario is based on a day versus night pumped-hydro schedule, completed with a 

sensitivity having full or no availability of non-contracted mFRR balancing energy bids after day-ahead. Available mFRR 

reserve sharing is now based on day-ahead predictions of the available transmission capacity after intra-day while 

taking into account relevant limits set by the system operation guidelines : 312 MW for upward and 550 MW for down-

ward (if predicted in export or undefined). Finally, all algorithms are based to predict the available FRR means with a 

confidence level of 99%. This means that the predicted volume is expected to be available with a certainty of 99%.  

4.1.2. Available non-contracted mFRR balancing means  

Figure 23 (left) represents a distribution of the realized total non-contracted upward mFRR balancing means under the 

above-mentioned assumptions. Note that, as these have been implicitly calculated by Elia based on the last known 

schedules, these may also contain capacity which would have been eligible for providing non-contracted aFRR balanc-

ing means. The distribution of available volumes demonstrates an average volume of 789 MW. Nevertheless, this 

would only result in a volume of 319 MW for 99% of the time or a volume larger than 1000 MW for 21 % of the time 

(the current upward FRR needs remain around 1000 MW). Although this may seem substantial, it should be noted that 

this already takes into account the mFRR sharing contribution.  

 

Figure 23: available non-contracted mFRR balancing means for upward (left) and downward (right) balancing  

Figure 24 (up) shows the breakdown of this volume per category: the non-contracted available regulation capacity 

(incremental bids), the available non-contracted pumped-hydro storage bids and the available mFRR reserve sharing. 

It is concluded that the above-mentioned ‘static’ potential is mainly following the mFRR reserve sharing contribution for 

which at least around 250 MW is available for most of the time. This confirms the current value considered in the LFC 

Means currently determining the allocation of the balancing means. This volume is complemented with pumped-hydro 

storage flexibility which can be very large in capacity (exceeding 1 GW) but remains relatively low in frequency as it 
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assumed to be only available during night. The incremental bids vary between 0 MW and 1000 MW and are currently 

coming only from thermal capacity.  

Although the distributions may show substantial volumes, it should be reminded that as long as remaining in a static 

approach, one should only look at volumes which are almost guaranteed to be available (represented by 99 th percentile) 

and that large part of this potential, i.e. 250 MW is already captured by means of mFRR reserve sharing. Capturing the 

additional volume of the 319 MW would require a partial procurement strategy which is demonstrated to be difficult to 

realize in practice18.  

 

Figure 24: Histogram of available non-contracted mFRR balancing means for upward (up) and downward (down) balancing per category 

In contrast, Figure 23 (right) represents a distribution of the realized total downward non-contracted mFRR balancing 

means. The distribution of available volumes demonstrates an average volume up to 2929 MW. Nevertheless, this  

only results in a volume of 719 MW for 99% of the time or a volume larger than 1000 MW for 97 % of the time (the 

maximum downward FRR needs are around 1000 MW). Note that these availabilities are currently considered sufficient 

in the previous LFC Means analyses to cover the downward mFRR needs without procurement.  

Figure 24 (down) showing the breakdown per category show that these volumes mainly come from the available down-

ward regulation capacity (decremental bids), including wind power, complemented with available pumped-hydro stor-

age (during the day time) up to volumes exceeding 1 GW and mFRR reserve sharing (up to 550 MW). The discrete 

profile with high frequency of values around 0 MW, 350 MW and 550 MW is explained by the total limit (550 MW) and 

the limits per border (350 MW). 

 

 

                                                           

 

 

18 Elia’s study on study on the evolution towards a daily procurement of mFRR (2017).  
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4.1.3. Available non-contracted aFRR balancing means 

Figure 25(left) represents the distribution of non-contracted upward aFRR balancing energy bids obtained via explicit 

bids received since October 2020. It is to be noted that frequency and volumes of positive bids is very low. It is observed 

that 71 % of time, the available volume remains at 0 MW, while the average lays hardly exceeds 7.4 MW. At no point 

in time, the available volume exceed 140 MW, the expected average aFRR needs in a dynamic dimensioning context19. 

On the other hand, Figure 25(right) shows larger frequency and volumes for non-contracted downward aFRR balancing 

energy bids. It is observed that 32 % of time, the available volume remains at 0 MW, while the average lays around 56 

MW. On 15 % of the time, the available volume exceeds 140 MW. 

 

Figure 25: Histogram of available non-contracted aFRR balancing means for upward (left) and downward (right) balancing  

It is to be noted that a large part of the non-contracted aFRR means are provided with remaining capacity on units 

which deliver the contracted aFRR. In the case of CCGT, playing the major role, it may mean that without balancing 

capacity procurement, the non-contracted balancing energy bids would neither be available, at least in in moments 

where the clean spark spread is negative. When implementing the right features, this effect should be captured by the 

machine learning methods. 

4.2. Comparison of forecast algorithms  

The performance of the three pre-selected algorithms in Section 3.1 are assessed over the separate test set, i.e. data 

which is only used to assess the performance of the model, and not to train the algorithms, or calibrate the parameters. 

The first criteria which is investigated is the ability of the algorithm to predict the available FRR means with a reliability 

level of 99.0%. For all algorithms matching the above mentioned criteria, the mean absolute error (MAE) over the test 

set is used for further assessment. Due to the nature of the problem (assessing a risk rather than predicting a value), 

this mean absolute value us calculated based on a quantile loss function. This quantile loss function20 compares the 

real-time observed value with the predicted 99% percentile values. If the value falls outside this [0%; 99%] confidence 

bandwidth, it will have a lager impact on the mean absolute error, contrary to the case when it falls within the interval. 

                                                           

 

 

19 Elia’s study on a dynamic methodology for aFRR dimensioning (2020) 
20 Lq(pred, obs) = max[q(obs − pred), (q − 1)( obs − pred)] comparing the delta between the predicted value (pred) and 
observed value (obs) 
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While the reliability and the mean absolute error are used to calibrate the algorithm towards acceptable performance, 

the volume indicates the average non-contracted balancing energy bids for the next day which can be predicted as 

‘firm’. 

Table 1 represents the final results for the three algorithm categories which are quantitatively analyzed towards their 

ability to forecast the non-contracted balancing means, compared to the ‘static’ methodology. The latter is based on a 

fixed value based on the 99th percentile of the probability distribution. It is also shown that even the simple linear 

regression model achieves a prediction resulting in higher volumes as under the fixed ‘static’ volume.  

Under the best calibration found, the sophisticated models can deliver better predictions as the linear regression, and 

in particular the random forests in which the predicted available FRR means deliver the highest volumes. This result is 

observed for as well up- as downward mFRR non-contracted balancing means. It can be seen that the difference 

between a neural network and random forests is not very large, but as the random forests are less complex and more 

interpretable, these are put forward as the best solution for this problem. For this reason, all further analysis will be 

conducted with random forest models. However, algorithms will be calibrated separately for up- and downward mFRR 

and when assessing individual subcategories: pumped-hydro storage, mFRR reserve sharing and available regulation 

capacity using the selected features following Section 2. 

Table 1: Performance of the several algorithm for forecasting the non-contracted mFRR means compared to a static approach 

 

 

Note that the random forests is for this reason also assumed to provide the best accuracy for aFRR. However, Table 

2 shows that, under the best settings, no significant potential is yet witnessed due to the limited availability of positive 

and significant volumes, as well as the limited data set of nine months, no further analyses seemed useful at this point. 

It might probably make sense to pursue further analysis when obtaining a sufficiently large data set approaching a 

length of two years, while facing a more liquid market.  
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Table 2: Performance of the random forest algorithm for forecasting the non-contracted aFRR means compared to a static approach  

 

 

4.3. Simulation results 

4.3.1. Upward non-contracted mFRR balancing means 

Figure 26 (up) represents the distribution of the total predicted non-contracted upward mFRR balancing means. When 

comparing to the ‘static’ distributions in the previous sections, the results show a different distribution, with lower vol-

umes in general. This is explained as by the forecast approach, predicting the available means to be available with a 

99% certitude. This is ensured by the algorithm by penalizing overestimations harder in comparison to underestima-

tions. It can be seen that the average predicted volume is found to be 500 MW while the amount of time the volume 

higher than 1 GW is found to be 14%.  

 

Figure 26: Histogram of predicted available upward non-contracted mFRR balancing energy bids (upper) and breakdown per category (lower) 

When breaking down the contribution of forecasted reserve sharing, pumped-hydro storage and other incremental bids 

contribution (Figure 26, down), it is found that the prediction of the available mFRR sharing provides a large contribution 
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as this capacity seems to be (cf. also the static distribution in Section 4.1.2) available for most of the time. When looking 

at the other distributions it is found that pumped-hydro storage provides very limited contribution and other, mainly 

thermal, incremental capacity only provides contribution up to 150 MW.  

However, as the ‘static’ distribution shows that the required mFRR needs are not always covered, and procurement of 

upward balancing capacity is expected to remain required, implementing a forecast tool on the available means pro-

vides a potential to support a dynamic calculation to avoid or partially reduced balancing capacity procurement during 

certain periods. The implementation of the market implications is of course subject to further investigation and conclu-

sion of this result limits itself here to confirming that a ‘firm’ volume of non-contracted capacity can be predicted. 

4.3.2. Downward non-contracted mFRR balancing means 

Figure 27 (up) represents the distribution of the total predicted non-contracted balancing means. Similar to upward, the 

results show a different distribution, with lower volumes in general, as with the static distribution. It can be seen that 

the average predicted volume is found to be 1940 MW while the amount of time the volume higher than 1 GW is found 

to be 86%.  

 

Figure 27: Histogram of predicted available downward non-contracted mFRR balancing energy bids (upper) and breakdown per category (lower) 

When breaking down the contribution of forecasted sharing, pumped-hydro storage and other decremental bids contri-

bution Figure 27 (down), it is found that the prediction of the available mFRR sharing does not perform very well and 

results in a distribution which is much lower as the real distribution. This is partially explained by the discrete aspect 

trough the introduction of several caps, i.e. 350 MW per cable and 0 MW or 550 MW total following SOGL. An algorithm 

based on regression is maybe not the best choice to predict the mFRR sharing contribution and a suitable alternative 

might be classification method. However, optimizing the algorithms for predicting the available mFRR sharing volumes 
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today is not deemed very useful in view of the upcoming evolutions on the European balancing platforms in 2022. 

When looking at the other distributions it is found that the main contribution comes from decremental capacity, including 

wind power and pumped-hydro storage. 

However, as the ‘static’ distribution shows that the required mFRR needs are almost always covered, and no procure-

ment of downward balancing capacity is expected to be required, implementing a forecast tool on the available means 

is of little value for the dimensioning. In contrast, relying on such tool would, with a coverage of only 86% of the time, 

not comply with reliability standards and require procurement with corresponding costs. However, it is not excluded 

that such predictions may be useful for operational reasons, i.e. predicting periods with higher / lower available flexibil-

ity. 

4.3.3. Non-contracted aFRR balancing means 

A separate analysis is conducted for aFRR. The random forest algorithm has been calibrated to predict the explicit 

aFRR non-contracted balancing energy bids. Figure 28 (left) shows that the algorithm is not able to provide any pre-

dictions. This is explained by the limited availability of explicit bids (as demonstrated in section 4.1.3) in combination 

with a limited training set (only 9 months) while imposing a high reliability requirement (99%). Therefore, at this point, 

no other meaningful analysis on predictability can be made. Indeed, changing algorithms is not expected to substan-

tially improve the outcome of the predictions, at least not before facing liquidity and additional data. 

Figure 28 (right) shows that the downward faces similar issues, although to lesser extend due to the availability of 

higher liquidity on the downward side. Nevertheless, 40% of the 15-minute intervals between 1st October 2020 and 

30th of June 2021, the downward volume of non-contracted aFRR means is below 5 MW. In combination with the high 

reliability level, this explains the low volumes that are predicted. While other algorithms might be able to overcome this 

issue, it is not considered very useful as long as no more data becomes available (at least two years).  

For the above-mentioned reasons, no strong conclusions on a dynamic procurement method for aFRR can be made 

at this point in time. There is no reason to assume that volumes, after facing sufficient liquidity, cannot be predicted, 

but the current availability of data does not allow to confirm this hypothesis.  

 

Figure 28 : Histogram of predicted available upward (left) and downward (right) non contracted aFRR balancing energy bids  
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4.4. Sensitivities 

4.4.1. Pumped hydro storage schedules 

Pumped-hydro storage is found to provide a substantial contribution to the non-contracted balancing energy volumes. 

Nevertheless, it is expected that this contribution depends largely on the assumptions taken on available energy levels 

which remain subject to large uncertainty until the implementation of the explicit bidding for mFRR. Indeed, a day versus 

night modelling is probably too simplistic, certainly when facing further increase in variable renewable generation. 

To obtain some insight on the impact of this assumption, a sensitivity to the reference scenario is conducted when 

assuming no pumped-hydro storage availability (e.g. pumped-hydro is fully optimized and all energy is assumed to be 

needed to meet current and future planned schedules) versus full availability (e.g. pumped-hydro storage is assumed 

to always be able re-optimize trough short-term market and deviate from the planned schedules). Both scenarios are 

extreme cases which are unlikely to be true in reality. 

Figure 29 shows how excluding pumped-hydro storage from the analysis reduces upward non-contracted mFRR bal-

ancing means to the original ‘static’ levels, limiting the potential value of the prediction. Also on the downward side, it 

would impact the ability to cover the downward mFRR needs. On the other hand, taking the case without energy limits 

would seriously increase the upward volumes up to a coverage of the mFRR needs from 13% to 70%, while the down-

ward coverage is, despite the increase in average volumes, only increasing from 86% to 98%.The asymmetric effect 

is due to the assumption that night time period (between 4 AM and 8 MW) is much shorter than the day-time period 

(between 8 AM and 4 AM). 

 

Figure 29: Histograms of available non contracted balancing energy bids for mFRR.for sensitivities on pumped-hydro storage operation 
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Both sensitivities are obviously extreme and the day-night profile is considered to remain an acceptable starting point 

for analysis until explicit bids can be taken into account. Furthermore, the results give general insight in the potential 

contribution of electricity storage technologies such as batteries which can react in the full activation time requirements 

of mFRR.  

4.4.2. Additional sensitivities on the reference scenario 

Figure 30 presents the results of a few additional variations on the reference scenario which have been conducted to 

give some insight in the effect of incremental wind power combined with the implementation of the new interconnection 

with Germany, as well as the effect of the pumped-hydro plant of Coo-Trois-Ponts maintenance.  

In first instance, a scenario without wind power upscaling and without the new interconnector to Germany slightly 

increases the predicted available non-contracted mFRR balancing means. This effect is mainly due to the additional 

sharing capabilities which make the mFRR reserve sharing more predictable explaining why there is no effect on the 

‘static’ results. In contrast, the effect of incremental wind power is, as expected, substantial but only in the downward 

direction. In second instance, the effect of the period with the maintenance of Coo-Trois-Ponts results decreases the 

predicted up- and downward mFRR means. The effect is larger for the downward side due to the assumptions taken 

on pumped-hydro storage (only available between 4 AM and 8 AM).  

 

 

Figure 30: available non contracted balancing energy bids for mFRR.for sensistivities on the reference scenario 
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5. Implementation planning  

Section 4 confirms the possibility to predict the mFRR non-contracted balancing means with sufficient accuracy for an 

application in a dynamic calculation of the balancing means. However, the study focused only on the ‘predictability’ of 

non-contracted balancing means which is only the first condition for pursuing an implementation of a dynamic allocation 

of FRR balancing means to cover the respective needs.   

Simulations confirm this predictability for upward mFRR balancing capacity, where the forecast can potentially be used 

to reduce balancing capacity requirements. In contrast, for the downward mFRR reserves, there is no real potential for 

a reduction of balancing capacity volumes as long that there is no need for procurement. Finally, for the aFRR balancing 

capacity, it is currently not possible yet to confirm the potential to predict available non-contracted balancing energy 

bids.  

Elia therefore proposes to further investigate the implementation of a daily prediction of non-contracted balancing en-

ergy bids in function of a dynamic calculation of the balancing means. This could allow to further minimize the balancing 

capacity procurement volumes and costs. A multi-year roadmap is proposed in Figure 31 with in first instance a study 

in 2022 that investigates the procurement aspects when replacing (part of) the upward mFRR balancing capacity with 

non-contracted balancing energy bids. Objectives are to present potential procurement solutions for accounting non-

contracted in the allocation of balancing means, identify risks and potential risk mitigation for market stability and update 

to the extent possible the results and conclusions based on additional data. 

 

Figure 31: Proposed roadmap before starting implementation 

However, it is for a fact that the impact of upcoming market evolutions in 2022 being the implementation of the EU 

balancing platforms and the implementation of explicit bidding and 12.5 minute FAT for mFRR cannot be investigated 

to full extend in 2022. Indeed, the proposed forecast tool is trained on historic data and sufficient data will only become 

available in the course of 2023 and 2024. This means an additional study focusing on the robustness of the prediction 

tool and the dynamic procurement mechanism will be required after 2022. This study will target to confirm the results 

and value of implementing a dynamic calculation of the means together with the planning for the implementation, i.e. 

revision of regulatory documents, calibration of the algorithms, development of operational process and modification of 

the required software tools). 

The proposed multi-year implementation roadmap will allow to first fully understand the potential and the implications 

for the market before starting the implementation of a dynamic calculation of the balancing means.  
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6. Conclusions  

The objective of this study was to analyze if Elia’s available non-contracted balancing energy bids for the next 

day can be predicted. For this, a machine learning approach is used in which algorithms are trained, based on historic 

observations, to predict the available non-contracted balancing means for each period of the next day. These non-

contracted balancing means include the non-contracted balancing energy bids and the available reserve sharing with 

other TSOs. This prediction is assumed to be conducted before the balancing capacity auctions, in parallel with the 

daily dimensioning of the reserve capacity needs, i.e. at the latest 7 AM of the day for which the balancing capacity is 

to be procured.  

 

Main conclusions is that the non-contracted upward mFRR balancing means can be predicted to an acceptable extend, 

demonstrating a potential volume of 500 MW, on average, while a volume of 1000 MW can be ensured for 14% of the 

time (Figure 32, left). It has to be remarked that a large contribution is provided by the available mFRR reserve sharing, 

of which a large part (250 MW) is currently captured in the ‘static approach. Nevertheless, it can therefore be con-

cluded that there is a potential value for such prediction tool and this potential is expected to further increase 

with additional volumes brought by a consumer-centric market design and the upcoming EU balancing energy 

platforms. However, one of the main conditions to harness this value is to find appropriate procurement mechanisms 

to deduct this capacity from the balancing capacity to be procured.  

 

Figure 32: Histogram of available non-contracted mFRR balancing means for upward (left) and downward (right) 

  

In contrast, the non-contracted downward mFRR balancing means demonstrate a potential volume of nearly 1940 MW, 

on average, while a volume of 1000 MW can be ensured for up to 86% of the time (Figure 32, right). It is important to 

keep in mind that these volumes are always lower compared to the observed availability. This is explained as the 

forecast tool aims to forecast guaranteed volumes, expected to be available with a 99.0% confidence level. For in-

stance, when looking at the available volumes on the downward side over the same period, a volume of 1000 MW can 

be ensured for up to 97% of the time. The results confirm the current approach to not procure downward mFRR 

balancing capacity and it can therefore be concluded that there is no potential value for this prediction tool as 

long as observed non-contracted balancing means continue to cover the downward reserve capacity needs.  

Firstly, results for the non-contracted aFRR balancing means demonstrate that no substantial volumes can be predicted 

at this point in time. This is explained by the fact that the available data was limited to only 9 months (as from the 
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implementation of the new product design in October) while during this period largest part of the time, no or very limited 

volumes are available, and this in particular for upward aFRR. Conclusion is that at this point, no potential for 

predicting the available non-contracted aFRR balancing means can be confirmed at this time due to lack of a 

robust context and data set. 

 

Based on a historic data set for a period of two years (from April 16, 2019 until April 15, 2021), the best performing 

algorithm is found to be the random forests algorithm, being able to predict, on average, the largest volumes of non-

contracted balancing energy bids while maintaining a confidence level of 99%. This algorithm is used to predict the 

non-contracted balancing means based on a set of 168 features. The algorithms are trained and calibrated according 

to machine learning best practices. However, due to current data limitations (cf. aFRR) and upcoming market evolutions 

(cf. EU balancing platforms, mFRR explicit bidding and 12.5 minute mFRR FAT) it is required to update this analysis 

at a later point in time.  

 

Based on these results, Elia proposes to follow an implementation roadmap to pursue a dynamic calculation of the 

allocation of the balancing means. In first instance, a follow-up study is needed taking into account the new system 

evolutions. These modifications are expected to have an effect on the available volumes of non-contracted balancing 

means which can be predicted, although it is currently very uncertain to which extend. As these modifications will only 

be implemented in the final quarter of 2022, and more than a year of data is needed to conduct meaningful analyses, 

this update can only be conducted the soonest in 2023 or 2024. However, while awaiting the results of this analysis, 

expecting to confirm the potential, Elia proposes to already analyze procurement aspects of a dynamic allocation in 

2022. This study needs to focus on the possibilities and impact of partially / intermittently reduce balancing capacity 

procurement on mFRR. 

 

 

Elia Consultations 

Consultations@elia.be 

Elia System Operator SA/NV 

Boulevard de l’Empereur 20  |  Keizerslaan 20  |  1000 Brussels  |  Belgium 

Contact: Kristof De Vos 
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ANNEX 

acronym variable 

aFRR_bids_down available non-contracted upward aFRR balancing energy bids 

aFRR_bids_down_d-1 available non-contracted upward aFRR balancing energy bids of the previous day 

aFRR_bids_up available non-contracted downward aFRR balancing energy bids 

aFRR_bids_up_d-1 available non-contracted downward aFRR balancing energy bids of the previous day 

arc_dc_down available downward regulation capacity from controllable units  

arc_dc_fuel_ng_d-1 available downward regulation capacity from controllable gas units of the previous day 

arc_dc_tech_ccgt_d-1 available downward regulation capacity from controllable ccgt units of the previous day 

arc_dc_total_d-1 available downward regulation capacity from controllable units of the previous day 

arc_dlc_total available downward regulation capacity from limited controllable units  

arc_dlc_total_d-1 available downward regulation capacity from limited controllable units of the previous day 

arc_ic_fuel_ng_d-1 available upward regulation capacity from controllable units of the previous day 

arc_ic_tech_ccgt_d-1 available upward regulation capacity from controllable ccgt units of the previous day 

arc_ic_total available upward regulation capacity from controllable units  

arc_ic_total_d-1 available upward regulation capacity from controllable units of the previous day 

arc_ilc_total available upward regulation capacity from limited controllable units  

atc_export_cap capped available export transmission capacity after intra-day 

atc_fr_export_cap capped available export transmission capacity after intra-day with France  

atc_fr_export_cap_d-1 capped available export transmission capacity after intra-day with France of the previous day 

atc_fr_import_cap capped available import transmission capacity after intra-day with France  

atc_fr_import_cap_d-1 capped available import transmission capacity after intra-day with France of the previous day 

atc_import_cap capped available import transmission capacity after intra-day 

atc_nl_export_cap capped available export transmission capacity after intra-day with the Netherlands 

atc_nl_export_cap_d-1 capped available export transmission capacity after intra-day with the Netherlands of the previous day 

atc_nl_import_cap capped available import transmission capacity after intra-day with the Netherlands 

atc_nl_import_cap_d-1 capped available import transmission capacity after intra-day with the Netherlands of the previous day 

atc_uk_export_cap capped available export transmission capacity after intra-day with the United Kingdom 

atc_uk_export_cap_d-1 capped available export transmission capacity after intra-day with the United Kingdom of the previous day 

atc_uk_import_cap capped available import transmission capacity after intra-day with the United Kingdom 

atc_uk_import_cap_d-1 capped available export transmission capacity after intra-day with the United Kingdom of the previous day 

DOWN_and_sharing total downward mFRR balancing capacity means 

DOWN_and_sharing_d-1 total downward mFRR balancing capacity means of the previous day 

forecast_da_price_d-2 day-ahead market electricity prices of the previous day 

gas_prices_d-1 gas prices of the previous day  

mFRR_total_volume_offered_d-1 offered mFRR balancing capacity volume of the previous day  

phs_freebids_downward available downward regulation capacity on pumped-hydro storage 

phs_freebids_downward_d-1 available downward regulation capacity on pumped-hydro storage of the previous day 

phs_freebids_upward available upward regulation capacity on pumped-hydro storage 

phs_freebids_upward_d-1 available upward regulation capacity on pumped-hydro storage of the previous day 

prices_da_market_d-1 day-ahead market electricity prices of the previous day 

residual_load forecasted total load minus forecast of renewable generation(PV, Wind) 

residual_load_nu forecasted total load minus forecast of renewable generation and available nuclear capacity  

residual_load_nu_ng forecasted total load minus forecast of renewable generation and available nuclear and gas capacity  
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time_day time (discrete function) 

time_dayF1 day by means of continuous sin(x) function 

time_monthF1 months by means of sin(x) continuous function 

total_arc_down available downward regulation capacity  

total_arc_up available upward regulation capacity  

total_load_forecast total load forecast 

UP_and_sharing total upward mFRR balancing capacity means 

UP_and_sharing_d-1 total upward mFRR balancing capacity means of the previous day 
wind_off-
shore_tso_day_ahead_forecast offshore wind power forecast 

wind_total_day_ahead_forecast  wind power forecast 

wind_tso_day_ahead_forecast tso connected wind power forecast 
In bold : target variables 


