
0

Technical Guide for Gateway
Management
Version 2.7 – 01/02/2022

1

Table of content

1 Contacts .. 4

2 Introduction .. 5

3 Asset configurations ... 6

4 Data exchange specifications: GW to CP .. 7

4.1 Data flows ... 7

4.2 Interfaces .. 8

4.2.1 Certificate base authentication ... 8

4.2.2 Product Messages .. 9

4.2.3 Encryption keys .. 11

4.2.4 Encryption key Request ... 13

4.2.5 Heartbeat ... 14

4.3 Exception handling ... 17

4.3.1 Buffering... 17

4.3.2 Throttling ... 17

4.3.3 Message grouping .. 17

4.3.4 Fallback files ... 17

4.4 Service level agreements .. 18

5 Data exchange specifications: App to CP ... 19

5.1 Data flows ... 19

5.2 Interfaces .. 20

5.2.1 Product Messages .. 20

5.3 Connection to EventHub .. 22

5.4 Connection to KMS ... 22

5.5 Exception handling ... 25

5.5.1 Buffering... 25

5.5.2 Message grouping .. 25

5.5.3 Fallback files ... 25

5.6 Service level agreements .. 26

6 Technical features .. 27

6.1 URL’s and config ... 27

6.2 Message format testing .. 28

6.3 Time synchronization ... 28

6.4 Examples ... 29

2

6.4.1 Data exchange .. 29

7 Master Data APIs .. 31

7.1 Introduction .. 31

7.2 Master data setup .. 31

7.3 GatewayModel Management... 32

7.3.1 GetGatewayModelList ... 32

7.3.2 CreateGatewayModel .. 32

7.3.3 UpdateGatewayModel ... 33

7.3.4 ActivateGatewayModel ... 34

7.3.5 DesactivateGatewayModel .. 34

7.3.6 UpdateGatewayModelDocuments .. 35

7.4 Gateway Management ... 37

7.4.1 GetGatewayList .. 37

7.4.2 CreateGateway .. 38

7.4.3 EditGateway ... 39

7.4.4 ActivateGateway .. 39

7.4.5 DeactivateGateway .. 40

7.4.6 RequestCertificateToken ... 40

7.5 System Operator Management .. 42

7.5.1 GetSystemOperatorList.. 42

7.6 EndPoint Management ... 43

7.6.1 GetEndpointList ... 43

7.6.2 CreateEndpoint .. 44

7.6.3 EditEndpoint .. 44

7.6.4 ActivateEndpoint ... 45

7.6.5 DeactivateEndpoint ... 46

7.6.6 MoveEndpoint ... 46

7.6.7 LinkEndpointToGateway .. 47

7.6.8 DecoupleEndpointFromGateway... 48

7.6.9 ReplaceGateway .. 49

7.7 Data Source / Statistics ... 50

7.7.1 GetDashboardStatistics .. 50

7.7.2 GetEndpointStatistics... 51

7.7.3 GetGatewayStatistics ... 53

7.8 Business Rules ... 55

3

7.8.1 All indicated time is in UTC .. 55

8 Annexes .. 56

8.1 Product messages ... 56

8.1.1 aFRR body .. 56

8.1.2 FCR body .. 56

4

1 Contacts

For any question, please contact the following persons:

- Business related questions:

Contract managers – contracting_AS@elia.be

- Technical questions:

Frate Michaël – michael.frate@elia.be – +32 472 38 10 32

mailto:michael.frate@elia.be

5

2 Introduction

In the new aFRR design, a real-time data exchange of measured data and a collection of
parameters, used for the aFRR-settlement process is required for delivery points DPPG (i.e
delivery points for which ELIA does not receive MW daily schedules) participating to the
aFRR service.

For FCR, the technical units that make part of a virtual delivery point need to exchange
their real-time data.

Private measurement devices must send the data, via gateways, directly or indirectly to
the Communication Platform. To secure this data and the platform, we will deploy multiple
mechanisms with respect to the data exchange (E2E encryption of the measured data
between the gateway and the FlexHUB, certificate-based authentication) and require the
upload on the Real-Time Communication Platform Web Portal of specific security-related
technical documentation for each gateway model.

The following document describes technical framework related to the management of the
gateways and delivery points connected to the Elia grid and their interaction with the Real-
Time Communication Platform.

6

3 Asset configurations

The following configurations are authorised (see figure below):

1. A single gateway transmits real-time data from one SDP measured by a
measurement device.

2. A single gateway transmits real-time data from multiple SDPs measured by
measurement devices.

In both configurations,

a. The private measurement device is located at the SDP. The SDP can also be defined

at the level of the headpoint/access point.

b. The connection of a single gateway to SDPs located on two or more access points
is not allowed.

c. A gateway must collect every 4s (exactly at second 0, 4, 8, 12, …), the

instantaneous power measurement values of a measurement device and other
necessary parameters required for the aFRR services, and communicate this in
real-time to the real-time Communication Platform using the communication
protocol determined by Elia.

Centralised virtual gateways are also an allowed setup. The data will still be sent per
delivery point, each delivery point being linked to a separate virtual gateway, to the
Communication Platform. All specifications written in this document and corresponding
business processes remain valid and must be complied to.

7

4 Data exchange specifications: GW to CP

This section describes the detailed data exchange interface specifications to exchange data
between the gateways, the Communication Platform and the security components. In the
first version of the platform, the exchange of aFRR data is unidirectional (except for
Heartbeat) from the gateways via the Communication Platform to the Flexhub. The
message flow will consist of real-time 4s aFRR messages, used for the settlement of aFRR
activations. One message will be sent for each delivery point connected to a gateway.

The exchange of FCR data is unidirectional (except for Heartbeat) from the gateways via
the Communication Platform to the Flexhub. The message flow will consist of real-time 2s
FCR messages, used for the verification of the aggregated signal sent by the BSP for FCR
activations. One message will be sent for each delivery point connected to a gateway.

The security mechanisms allow a reliable and secure data exchange: the Public Key
Infrastructure allows certificate-based authentication of the gateways and the Key
Management System distributes encryption keys that can be used to encrypt the aFRR and
FCR message body.

4.1 Data flows

Underneath you can find a visualisation of the E2E process flow of all data exchanges the
gateways must be able to support.

1. Each gateway and application that will connect to the Communication Platform will

need to acquire a digital certificate from the Public Key Infrastructure (valid for 2 years).
This certificate is used to authenticate the gateway for all connections to the platform
and Key Management System.

8

2. As explained in the introduction, the data (body) has to be end-to-end encrypted (from
GW to Flexhub). Every day, an independent Key Management System (KMS) will
generate encryption keys they need to use for message body encryption and will send
these via the Communication Platform to the gateways.

3. Every 4 seconds, an aFRR message with encrypted body is send by the gateway to the

Communication Platform. Every 2 seconds, a FCR message with encrypted body is send
by the gateway to the Communication Platform. To be able to connect and publish the
message on the queue, the gateways must have a digital certificate retrieved from the
Public Key Infrastructure (PKI).

4. At regular interval (initially every 5 minutes), the Communication Platform will put a
heartbeat message on the topic on which the gateway must reply. The message
includes key values for specific use cases and for gateway connection status updates.

Message queues enable asynchronous communication, which means that the endpoints
that are producing and consuming messages interact with the queue, not each other. In
contrast to queues, in which each message is processed by a single
consumer, topics and subscriptions provide a one-to-many form of communication, in
a publish/subscribe pattern

The data exchange between the gateway and the Communication Platform will be done
using two different topics (1 topic for each direction see section 5.1).

4.2 Interfaces

4.2.1 Certificate base authentication

The following scenarios will be provided for acquisition of tokens and certificates:

Scenario 1: Acquisition of the Certificate through the portal

9

1. The CP user requests a token via an action in the user interface of the portal for a
gateway. A validation code will be generated and shown in the portal in the concerned
gateway information screen, and a mail will be sent to you with a token.

2. The CP user navigates to a secure webpage via the web portal and uses the token as
well as the validation code to download the certificate.

3. When the request is valid, the CP user can download a ZIP file with the PFX file and
the password to extract the certificate (CERT file - X.509 Certificate). Another file is
also present with an AES key. This key has to be used when the GW model is configured
using AES to decrypt the received encryption key (see 4.2.3).

Scenario 2: Acquisition of the Certificate by the Gateway using a token

This second scenario will be available in a subsequent release. The detailed specification
will follow in a next update of this document.

4.2.1.1 Request

Documentation will come.

4.2.1.2 Reply

Documentation will come.

4.2.1.3 Technical information

Information will come.

4.2.2 Product Messages

The messages in the data exchange will be composed of a functional header and a message
body dependent on the product.

All required (and optional) fields are described in the following sections. In the element
column, we use abbreviations to make the message tags smaller to reduce the message
size.

With respect to datetimes, we use the ticks datetime format, which are the milliseconds,
counted from the reference date: 01-01-2019 00:00:00 UTC.

10

4.2.2.1 Header

Element Data
Type

Origin Description

MT -
Message
Type

String Data source
originated

Represents the message type &
frequency. This makes sure that every
message type is unique no matter what
frequency is requested.

SID –
Sender Id

String Data source
originated

The Endpoint Id as generated by the
Communication Platform

GID –
Gateway Id

String Date source
originated

The Gateway Id of the gateway as
generated by the Communication
Platform.

EKV –
Encrypted
key version

String
(optional)

Data source
originated

The version of the encryption key used
(changes at certain periods). If not sent
then the message body is to be
considered: not encrypted.

HV –
Header
version

Integer Data source
originated

The header version allows
communication on the same message
type but with different versions in case
the message header structure is
updated. This way, senders have time
to adapt and a receiver knows how to
interpret the message.

BV –
Body version

Integer Data source
originated

The body version allows
communication on the same message
type but with different versions in case
the message body structure is
updated. This way, senders have time
to adapt and a receiver knows how to
interpret the message.

CTS -
Creation
timestamp

Ticks (UTC) Date source
originated

The timestamp when the message has
been sent by the sender

4.2.2.2 Body (to be encrypted – see next sections)

For each product, a different body is defined according to the product requirements.
These bodies can be found in Product messages 8.1.
These bodies have to be encrypted using the encryption algorithm mentioned below.

4.2.2.3 Protocol

MQTTS protocol has to be used between the GW and the Communication Platform.

11

4.2.2.4 Encryption Algorithm

In order to encrypt the message bodies, the Advanced Encryption Standard (AES) /
Rijndael algorithm (128 bits) using symmetric keys is used. A lot of implementation
libraries are available in Python, JAVA, C#, …

The algorithm is described in the ISO/IEC 18033-3 standard. A simple description of this
algorithm can be found here:
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

This algorithm is used with, as default, the following parameters:

- Block size: 128 bits

- Key size: 128 bits

- Cypher: CBC

- Padding: PKCS7

4.2.3 Encryption keys

As described in the process flows, a Key Management System will generate encryption keys
and put them available through to each separate GW through the Communication
Platform.
Therefore, a specific message type will be exchanged.

4.2.3.1 Header

Parameter Value Description

MT – Message
Type

String
(ENCRYPTI
ONKEY)

Represents the message type & frequency. This makes
sure that every message type is unique no matter
what frequency is requested.

4.2.3.2 Body

Pay attention that the body is a collection of keys. At the moment, only two
MessageTypes are supported (aFRR and FCR) and thus only one element will be present in
this collection.

Parameter Value Description

MT – Message
Type

 The message type for which the key is requested

KEY string The encryption key itself. This key is encrypted from
the secure KMS using the GW certificate.

https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.wikipedia.org/wiki/List_of_International_Organization_for_Standardization_standards,_18000-19999
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Block_size_(cryptography)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Key_size

12

KV - Key version String The key version of the requested key

KT – Key Type string The algorithm supported for encryption

VF -
Valid From
(Start Validity)

Ticks Validity start datetime of the encryption key

VT - Valid To
(Stop Validity)

Ticks Validity end datetime of the encryption key

Gateways

An encryption key is valid for 36 hours and a new key will be retrieved daily. This means
we will have an encryption key overlap of 12 hours within which period the new key must
be received and used :

4.2.3.3 Technical information

The Communication Platform will exchange this message type with the same principles as
the aFRR and FCR messages but in the other direction. Therefore a second topic is used
(see later).

Please note that currently, only the AES / Rijndael algorithm is supported by the platform
to encrypt the AFFR messages. Others can be added later on.

To guarantee the confidentiality on the key, the key present in the message will be
encrypted also. The way is encrypt (and thus decrypt) the message and receive the key is
configured on GW Model level. There are 2 possibilities: RSA or AES. We advise to use RSA.

Using RSA: the GW will need to use its own certificate private key to decrypt the key.

Using AES: the GW will need to use the AES key given with the certificate to decrypt the
key. The parameters are the same than the one described in 4.2.2.4.

Message example:

Body (this will always be encrypted):

[{"MT":"aFRR","KV":"0jV0Iy","KEY":"sapS9WSIpkSqG/TLEUY5tQ==","VF":47735117728,"V
T":47864717728}]

13

Complete message:

{
 "MT": "ENCRYPTIONKEY",

"Body":
"hj7EFc+S5giTCk41loj21ILGOT4aZkafhXzSbmt/gy4ANB4as1MZsnyAwixU76vm4AEmniUw2
9+8gNLEg9Yq0LeR8Hc3zEqGXFaplqNv+6TrSQy+VvZG2NR4xaK1EvAUF8GeP6U9FMVz4eB8
MWB94RW44n3QOYfCQz7CTEJXvbwbwclGHJN4wsfGPMMxdZUeUiLAuhHvGG7KeLPefTl2
DoHS4N8B2mol7lXFZcSD1vnCy4kcF3Jyd6KPEzKfhkFJc2FZaidIjSWuo/Z5HQb74hAmg2m/R
EQnw7yXfaHjJ3E8ZzoFZhw+sR7TsBnZvDInni74zuv0R7UFTg2eHmKHnA==" }

4.2.4 Encryption key Request

As described in the process flows, a Key Management System will generate encryption keys
and put them available through to each separate GW through the Communication
Platform. When the GW has to be replaced or restarted with an empty configuration, the
latest encryption key(s) has(ve) to be requested to be able to send new messages again.
Therefore, a specific message type will be exchanged.
Note that you will receive one message (as described in section 4.2.3) for each message
type and version managed by your gateway with an active aFRR service (normally only one
because there is currently only one message type with only one version).
You will only receive a key when the EP managed by your Gateway has an active service. If
it is not the case, you can ask for a dummy key. This key has exactly the same format as a
normal key, but is recognized by the platform as a dummy key and your message is logged
with a specific error code and not transferred to the Flexhub.

4.2.4.1 Header

Parameter Value Description

MT -
Message Type

String
(ENCRYPTION
KEYREQUEST)

Represents the message type & frequency. This makes
sure that every message type is unique no matter
what frequency is requested.

GID –
Gateway Id

String The Gateway Id of the gateway as generated by the
Communication Platform.

CTS -
Creation
timestamp

Ticks (UTC) The timestamp when the message has been sent by
the sender.

4.2.4.2 Body

Body is empty.

14

4.2.4.3 Technical information

The Communication Platform will exchange this message type with the same principles as
the aFRR and FCR messages but in the other direction. A specific topic for this message
exchange will be foreseen.

Message example:

{
 "MT": "ENCRYPTIONKEYREQUEST","GID":"ABCDE","CTS":46184713978

}

4.2.5 Heartbeat

The heartbeat mechanism allows to exchange key values between the gateways and the
Communication Platform that are not related to the exchange of market data from endpoints.

The Communication Platform indicates the pace of the heartbeat messages and will be
initially set to every five minutes.

The heartbeat message has two functioning methods:

 Ad hoc: an action button in the management portal will be provided in order to initiate
a one-time heartbeat message sent to the gateway (see platform user manual). If this
message is successfully replied to by the gateway, its communication status will be set
to ‘Connected’. This allows the user to test the connection and authentication of a
gateway.

 Recurrent: once a service is activated on this endpoint, the CP will initiate a heartbeat
at the interval it choses (5 minutes initially). Also here, the communication status of
the gateway will be updated in the portal in case a single heartbeat is not replied to.
The time to live of the heartbeat message will equal the heartbeat frequency (5
minutes initially).

4.2.5.1 CP to GW

Header

Parameter Value Description

15

MID -
MessageId

Integer A counter that can be reinitialized

MT -
Message Type

String
(HEARTBEAT)

Represents the message type & frequency. This makes
sure that every message type is unique no matter
which message heartbeat is posted.

Body

Parameter Value Description

TS - Time Sync 1 Only present when a gateway must synchronize its
internal clock with an NTP server

GWV - GW
Version

1 Only present when a gateway must send its firmware
and software version. This will be requested daily.

TimeSync et GW version parameters are 2 keys that can be added as list of parameters in the
message. Other parameter(s) can be added later on in body.

Message example without time synchronization and GW version needed:

{

 "MID": 36,

 "MT": "HEARTBEAT",

 },

Message example with time synchronization and without GW version needed:

{

 "MID": 36,

 "MT": "HEARTBEAT",

 "Body": {"TS":1}

 },

Message example without time synchronization and with GW version needed:

{

 "MID": 36,

 "MT": "HEARTBEAT",

 "Body": {"GWV":1}

 },

Message example with time synchronization and GW version needed:

{

 "MID": 36,

 "MT": "HEARTBEAT",

 "Body": {"TS":1, "GWV”:1}

16

 },

4.2.5.2 GW to CP

Header

Parameter Value Description

MID -
MessageId

Integer The message ID of the Heartbeat request message.

MT -
Message Type

String
(HEARTBEAT)

Represents the message type & frequency. This makes
sure that every message type is unique no matter
what frequency is requested.

GID –
Gateway Id

String The serial number of the gateway as registered in the

Communication Platform.

CTS -
Creation
timestamp

Ticks (UTC) The timestamp when the message has been sent by
the sender

Body

Parameter Value Description

SV - Software
version

String The model software version on which the gateway is
running.
Only to be sent when the GW Version field in the
request is sent.

FWV - Firmware
version

String The model firmware version on which the gateway is
running.
Only to be sent when the GW Version field in the
request is sent.

Message example without software and firmware version needed:

{

 "MID": 36,

 "MT": "HEARTBEAT ",

 "GID": "123-ABCD",

 "CTS": 29666589696

 },

Message example with software and firmware version needed:

{

 "MID": 36,

 "MT": "HEARTBEAT ",

 "GID": "123-ABCD",

17

 "CTS": 29666589696,

 "Body": {"SV":"1.2", "FWV":"1.74"}

 },

4.2.5.3 Technical information

The Heartbeat will be pushed regularly on the GW receiver topic. The response is sent to the
same topic as the aFRR messages.

4.3 Exception handling

4.3.1 Buffering

A local buffering of at least 5 days has to be done locally. This will be used when the
communication between the GW and the Communication Platform is interrupted. The
data has to be timestamped at the moment they are produced.
Once the communication is back up, the messages not sent during the interruption have
to be sent.

4.3.2 Throttling

To avoid congestion, a maximum of 1 message can be sent per second per gateway.

4.3.3 Message grouping

- Message grouping can be done for a period of 1 minute (15 data of 4’’ or 30 data of
2’’). Pay attention that it is only valid during exception handling (communication
failure, …)

- When grouping, the header is sent only once and the bodies of the specific time series
will be grouped in one body.

- The body will be encrypted only once

4.3.4 Fallback files

In the event that Elia does not receive the data through real time communication for
bigger gaps, the following is put in place:

- The FSP must, on the request of Elia, be able to provide a fallback file with time
series containing the same parameters requested in the aFRR or FCR message.

- Elia can only request fallback files in a period covering maximum 90 days before the
day of request.

- The delivery of the fallback file must be fulfilled within five working days.

18

4.4 Service level agreements

To assure correct, complete and real-time data exchange, there will be a monitoring
foreseen on predefined KPIs.

19

5 Data exchange specifications: App to CP

This section describes the detailed data exchange interface specifications to exchange data
between applications, the Communication Platform and the security components. This
data exchange is suited for exchanging data for a large amount of delivery points, like in
low voltage connected delivery points.

The exchange of data has the same granularity as in the GW to CP configuration.

The security mechanisms allow a reliable and secure data exchange: the Public Key
Infrastructure allows secure authentication of the application and the Key Management
System distributes encryption keys that can be used to encrypt the aFRR and FCR message
body.

To connect an APP to the platform, you will need to contact the Communication Platform
Operator to receive the needed credentials for EventHub and KMS system.

5.1 Data flows

1. Each application that will receive two secrets from the Communication Platform

Operator (valid for 2 years). One secret is to connect to the Key Management System,
the other to connect to the Event Hub of the communication platform.

2. As explained in the introduction, the data (body) has to be end-to-end encrypted (from
App to Flexhub). Every day, the app can connect to the independent Key Management

20

System (KMS) using the first secret to retrieve the encryption keys they need to use for
message body encryption.

3. Every 4 seconds, an aFRR message with encrypted body is send by the app to the
Communication Platform Event Hub. Every 2 seconds, a FCR message with encrypted
body is send by the app to the Communication Platform Event Hub. To be able to
connect and publish the message on the queue, the app must the second secret.

5.2 Interfaces

5.2.1 Product Messages

The messages in the data exchange will be composed of a functional header and a message
body dependent on the product.

All required (and optional) fields are described in the following sections. In the element
column, we use abbreviations to make the message tags smaller to reduce the message
size.

With respect to datetimes, we use the ticks datetime format, which are the milliseconds,
counted from the reference date: 01-01-2019 00:00:00 UTC.

5.2.1.1 Header

Element Data
Type

Origin Description

MT -
Message
Type

String Data source
originated

Represents the message type &
frequency. This makes sure that every
message type is unique no matter what
frequency is requested.

AID –
Application
ID

String Data source
originated

The Application Id of the send
application as generated by the
Communication Platform

SID – Sender
Id

String
(optional)

Date source
originated

The Endpoint Id as generated by the
Communication Platform.
Mandatory for FCR/AFRR use cases.

ERIDS –
Received Id’s

Array of
Strings
(Optional)

Data source
originated

The list of endpoint receivers of the
messages (when the message is
specific for some endpoints).
Null for FCR/AFRR use cases.

ARIDS –
Received Id’s

Array of
String
(optional)

Data source
originated

The list of application receivers of the
message (when the message is specific
for some applications).

21

Null for FCR/AFRR use cases.

EKV –
Encrypted
key version

String
(optional)

Data source
originated

The version of the encryption key used
(changes at certain periods). If not sent
then the message body is to be
considered: not encrypted

HV – Header
Version

Integer Date source
originated

The header version allows
communication on the same message
type but with different versions in case
the message header structure is
updated. This way, senders have time
to adapt and a receiver knows how to
interpret the message.

BV – Body
Version

Integer Data source
originated

The body versions allows
communication on the the same
message type but with different
versions in case the message body
structure is updated. This way, senders
have time to adapt and a receiver
knows how to interpret the message

CTS –
Creation
timestamp

Ticks (UTC) Data source
originated

The timestamp when the message has
been sent by the sender.

5.2.1.2 Body (to be encrypted – see next sections)

For each product, a different body is defined according to the product requirements.
These bodies can be found in Product messages 8.1.
These bodies have to be encrypted using the encryption algorithm mentioned below.
These bodies have the same content as in the GW to Communication Platform data
exchange.

5.2.1.3 Protocol

Connection to EventHub (see 5.3 Connection to Eventhub).

5.2.1.4 Encryption Algorithm

In order to encrypt the message bodies, the Advanced Encryption Standard (AES) /
Rijndael algorithm (128 bits) using symmetric keys is used. A lot of implementation
libraries are available in Python, JAVA, C#, …

The algorithm is described in the ISO/IEC 18033-3 standard. A simple description of this
algorithm can be found here:
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.wikipedia.org/wiki/List_of_International_Organization_for_Standardization_standards,_18000-19999
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

22

This algorithm is used with, as default, the following parameters:

- Block size: 128 bits

- Key size: 128 bits

- Cypher: CBC

- Padding: PKCS7

5.3 Connection to EventHub

When an application is registered on the Communication Platform, connection details will be
provided to connect to a specific queue.
All the messages approved to be sent to your application will be sent to this queue (whatever
the message type).

Please note that the header of the messages received on the Eventhub will be different from
the messages sent by an application or the Gateway. Indeed, some additional fields will be
added (like a unique message id, the timestamp when the platform receives the message, the
timestamp when the platform process the message, …) and some fields will be removed
(Gateway ID for example). The body of the message will never be altered by the platform.

2 different topics will be provided: 1 to send data (used) and 1 to receive the data (currently
unused). Depending on the role played on the platform, one will be more relevant than the
other but both are always provided.

Documentation over Event Hubs can be found here:

Azure Event Hubs documentation | Microsoft Docs

Quickstart section gives you information how to connect in different programming languages:
.NET Core, Java, Python, JavaScript, Apache Kafka, Apache Storm, Go.

5.4 Connection to KMS

ACC:

Swagger URL of the KMS: https://cp-app-acc-sec-we-01.synergrid.be/swagger/index.html

URL of the service: https://synergridafrracc.onmicrosoft.com/security-api

TenantID (B2C) for identification: 7e362a04-a71b-491d-83c3-75d2b17b5d9b

PRE-PROD

Swagger URL of the KMS: https://cp-app-pre-sec-we-01.synergrid.be/swagger/index.html

URL of the service: https://synergridafrrpre.onmicrosoft.com/security-api

TenantID (B2C) for identification: 6b9b2089-a838-4cbe-963e-58bdc3aaeeaa

PROD

https://en.wikipedia.org/wiki/Block_size_(cryptography)
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Key_size
https://docs.microsoft.com/en-us/azure/event-hubs/
https://cp-app-acc-sec-we-01.synergrid.be/swagger/index.html
https://synergridafrracc.onmicrosoft.com/security-api
https://cp-app-pre-sec-we-01.synergrid.be/swagger/index.html
https://synergridafrrpre.onmicrosoft.com/security-api

23

Swagger URL of the KMS: https://cp-app-prod-sec-we-01.synergrid.be/swagger/index.html

URL of the service: https://synergridrtcp.onmicrosoft.com/security-api

TenantID (B2C) for identification: ed729655-fe49-4600-9b1a-f4b64fe4a5ee

Client: xxx (specific for each application)

Secret: yyy (specific for each application)

To obtain a token, the library ‘Microsoft.IdentityModel.Client’ can be used. The request is
composed as follows:
 https://login.microsoftonline.com/{tenantId}/oauth2/token

In the ACC case, we obtain:
https://login.microsoftonline.com/7e362a04-a71b-491d-83c3-

75d2b17b5d9b/oauth2/token

5.2.1 Get a key to decrypt a received message

Each received message on the EventHub will contain:
 A Key Version
 A Message Type

These 2 information will be needed to fetch the key from the Key Management System.
Pay attention: your (active) service can only receive the keys for message types used by this
service. Requests for other message types will be denied.
When a service is registered on the Communication Platform, connection details will be
provided to connect to the KMS.

API (GET): /api/v1/Key/decrypt/{messageType}/{encryptionKeyVersion}

Request:

messageType: the message type for which a key is requested

encryptionKeyVersion: the key version received in the message header

Response:

messageType: the message type for which a key is requested

validFrom: the date from which the key is valid

validTo: the date to which the key is valid

version: the key version

key: the key itself

{
 "messageType": "string",
 "validFrom": "2021-07-05T12:00:46.525Z",

https://cp-app-prod-sec-we-01.synergrid.be/swagger/index.html
https://synergridrtcp.onmicrosoft.com/security-api
https://login.microsoftonline.com/%7btenantId%7d/oauth2/token
https://login.microsoftonline.com/7e362a04-a71b-491d-83c3-75d2b17b5d9b/oauth2/token
https://login.microsoftonline.com/7e362a04-a71b-491d-83c3-75d2b17b5d9b/oauth2/token

24

 "validTo": "2021-07-05T12:00:46.525Z",
 "version": "string",
 "key": "string"
}

5.2.2 Get the last valid key to encrypt a message

When a message needs to be sent to the Communication Platform, a valid key has to be used.
The key is specific per message type.
When a service is registered on the Communication Platform, connection details will be
provided to connect to the KMS.
Pay attention: your (active) service can only receive the keys for message types used by this
service. Requests for other message types will be denied.

API (GET): /api/v1/Key/encrypt/{messageType}

Request:

messageType: the message type for which a key is requested

Response:

messageType: the message type for which a key is requested

validFrom: the date from which the key is valid

validTo: the date to which the key is valid

version: the key version

key: the key itself

{
 "messageType": "string",
 "validFrom": "2021-07-05T11:58:17.062Z",
 "validTo": "2021-07-05T11:58:17.062Z",
 "version": "string",
 "key": "string"
}

25

5.5 Exception handling

5.5.1 Buffering

A local buffering of at least 5 days has to be done locally. This will be used when the
communication between the App and the Communication Platform is interrupted. The
data has to be timestamped at the moment they are produced.
Once the communication is back up, the messages not sent during the interruption have
to be sent.

5.5.2 Message grouping

- Message grouping can be done for a period of 1 minute (15 data of 4’’ or 30 data of
2’’). Pay attention that it is only valid during exception handling (communication
failure, …)

- When grouping, the header is sent only once and the bodies of the specific time series
will be grouped in one body.

- The body will be encrypted only once

5.5.3 Fallback files

In the event that Elia does not receive the data through real time communication for
bigger gaps, the following is put in place:

26

- The FSP must, on the request of Elia, be able to provide a fallback file with time
series containing the same parameters requested in the aFRR or FCR message.

- Elia can only request fallback files in a period covering maximum 90 days before the
day of request.

- The delivery of the fallback file must be fulfilled within five working days.

5.6 Service level agreements

To assure correct, complete and real-time data exchange, there will be a monitoring
foreseen on predefined KPIs.

27

6 Technical features

6.1 URL’s and config

The platform will be available at the following URL’s:

ACC: https://rtcp-acc.synergrid.be/

DEMO: https://rtcp-pre.synergrid.be/

PROD: https://rtcp.synergrid.be/

Please note that the first tests starting from May 18th have to be done with the Pre-Prod
environment. The acceptance environment will be used when updates of the platform will be
released. The production environment (to use for the pre-qualifications tests) is released in
and will be available after contractual agreement with your Key Account Manager.

To connect to the platform, 2 steps are needed:

1) Connect to the Device Provisioning System (DPS) to receive the URL of the MQTT
broker. This URL can changed in time due to load spread for example or during a DRP.
Therefore, each time a new connection has to be established, a call to the DPS has to
be made to receive the broker URL.

2) Connection to the MQTT broker thanks to the URL given by the DPS

Note that you can use the Microsoft Azure IOTHub SDK available on Azure platform. This SDK
is available in different programming language. There is no obligation to use it. An example
of Gateway programming without the use of the SDK can be provided on demand (in C#).
Device Twins functionalities are not used.

DPS

- The Device Provisioning System URL is the following without using the Microsoft SDK:

https://global.azure-devices-
provisioning.net/{connectionScope}/registrations/{GatewayBusinessId}/register?api-
version=2019-03-31

- The GatewayBusinessId is generated by the platform when a new Gateway is created.

- The GW certificate has to be used to connect to the DPS

- Connection scope :

ACC: 0ne000F2E25

DEMO: 0ne000F7DB8

PROD: 0ne000FEA0A

Info: With the Microsoft SDK, the connection string is the following:

global.azure-devices-provisioning.net

https://rtcp-acc.synergrid.be/
https://rtcp-pre.synergrid.be/
https://rtcp.synergrid.be/
https://global.azure-devices-provisioning.net/%7bconnectionScope%7d/registrations/%7bGatewayBusinessId%7d/register?api-version=2019-03-31
https://global.azure-devices-provisioning.net/%7bconnectionScope%7d/registrations/%7bGatewayBusinessId%7d/register?api-version=2019-03-31
https://global.azure-devices-provisioning.net/%7bconnectionScope%7d/registrations/%7bGatewayBusinessId%7d/register?api-version=2019-03-31

28

Note that these URL’s & configurations will not change in case of DRP.

MQTT broker

- The connection has to be made thanks to the URL received by the DPS. During
testing phase, this URL will remain fix (cp-iothub-pre-we-01.azure-devices.net).

- Both root certificate et GW certificate are needed to connect to the MQTT broker

- TLS 1.0, 1.1 and 1.2 are still supported but both 1.0 and 1.1 are deprecated and will
not be supported in the future

So, it is needed to create an MQTTClient with these settings:
Hostname: cp-iothub-pre-we-01.azure-devices.net
Port: 8883
Secure: True
CA cert: rootCertificate (AzureBaltimoreRoot.cer)
Client Cert: Gateway certificate
MqttSslProtocols: TLSv1_2

Then we do a Connect on this client object with these settings:
ClientId: Gateway business Id
User name: cp-iothub-pre-we-01.azure-devices.net/{clientId}/?api-version=2018-06-30
Password: null
CleanSession: false
Keep alive: 10

- The name of the 2 topics are :
Cloud to Device: "devices/{GatewayBusinessId}/messages/devicebound/#"
Device to Cloud: "devices/{GatewayBusinessId}/messages/events/”

Heartbeat request and encryption keys comes on the same topic (Cloud to Device). The received
message type is different.
Hearbeat response and AFFR messages needs to be sent to the same topic also (Device to Cloud).

6.2 Message format testing

You can test the validity of JSON messages in the communication portal interface. See the
user manual of the platform for further explanations.

6.3 Time synchronization

Gateways have to be synchronized with an NTP server or an equivalent system at all times.
The precision of the timestamp should be at least 20ms. In case of consistent time difference,
the CPO will request, via a heartbeat message, to synchronise to an NTP server.

29

6.4 Examples

Here below, some examples of messages are given. It will also be possible to test your
message format (JSON Validation) in our test platform.

To receive more detail how to connect to the platform and a detailed example (in C#) of the
code to connect to our platform, please use the technical reference as defined in paragraph
1 of this document.

Other examples (in different programming languages) can be found here:
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks.

The section to use is ‘IoT Hub Device SDKs’.

6.4.1 Data exchange

Messages have to be sent with encrypted body. In this section, we will give you the overview
of unencrypted and encrypted data to allow you to generate the correct JSON before
encryption. As previously described, the body can contain multiple 4 seconds data to cover
some exception flows. Both cases are detailed here under.

 aFRR data – Unencrypted JSON with one 4’’ data :

 {

 "MT": "AFRR",

 "HV": 1,

 "BV": 1,

 "GID": "SN4589674",

 "CTS": 33496996088,

 "EKV": 1,

 "SID": "84V-UOU-40P",

 "Body":
[{"DPM":0.123,"DPB":0.987,"AS":1,"PS":0.0,"MTS":0,"SDP":"541122334455667788"}]

 }

 aFRR data – Encrypted JSON with one 4’’ data :

 The encryption key to use for this message has the following properties:

Encryption type: RijndaelManaged -> KeySize: 128, Padding: PKCS7, Mode: CBC
Encryption key: 9xu0DqrgaFYgrPhudq9s6A==

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-sdks

30

Encryption IV: 9xu0DqrgaFYgrPhudq9s6A==

{
 "MT": "AFRR",
 "HV": 1,
 "BV": 1,
 "GID": "SN4589674",
 "CTS": 33496996088,
 "EKV": 1,
"SID": "84V-UOU-40P",
 "Body":
"9pMzn4mX5b/+y5SSPVzi6vgebzyLDQJ5bog4c3mg+8cIXS1eVw5ELNlbBUqllhYznMt872Nu7dwUyBTb
Ykl7IPcC9NK8XFy9wnFtVLLmFjM="
 }

 FCR data – Unencrypted JSON with one 2’’ data :

{

 "MT": "FCR",

 "HV": 1,

 "BV": 1,

 "GID": "SN4589674",

 "CTS": 33496996088,

 "EKV": 1,

 "SID": "84V-UOU-40P",

 "Body": “[{"MTS": 33496996088,"DPM": 0.15,"SDP": "11987"}]”

}

31

7 Master Data APIs

7.1 Introduction

This section describes the Communication Platform API’s for master data management. These APIs
enable the onboarding of your master data as well as querying information.

In order to be able to connect to the API’s, you will need to contact the RTCP Operator (thanks to
the Contact us form or specific CPO email address) to receive the needed credentials.

Authentication will be done based on a client secret mechanism linked to your RTCP account.

7.2 Master data setup

In case of setup the technical units under a virtual delivery point. An endpoint as explained below

needs to be created for each technical unit. The virtual delivery point will be created in the Flexhub.

In that case the headpointEAN is the EAN of the virtual delivery point and the FriendlyName is the
EAN of access point where the technical unit belongs to (for example, the EAN code of the house)

32

7.3 GatewayModel Management

7.3.1 GetGatewayModelList

Get: /api/interface/v1/GatewayModel

7.3.1.1 Domain

Request

No Parameter. The account is deduced from the authentication.

Response

Fields Type Description

id String The GW model id
Name String The model name

Status Enum Status (Active, Inactive)

Manufacturer String The manufacturer name
CreatedOn DateTime Creation date and time

7.3.1.2 Business Rules

No specific business rules

7.3.2 CreateGatewayModel

Put: /api/interface/v1/GatewayModel

7.3.2.1 Domain

Request

Fields Type Description

Name String The model name
Manufacturer String The manufacturer name
Encryption Key Type Enum Encryption Key Type (AES or RSA)

33

Response

Fields Type Description

gatewayModelId String The model id
gatewayModelStatus Enum Status (Active, Inactive,

DocumentationRequired)

7.3.2.2 Business Rules

ErrorCode Error Text

0

1 GW Model Name must be unique

2 GW Model Name is empty

3 GW Model Manufacturer is empty

4 EncryptioKeyAlgorithm unknown

100 Unexpected error

7.3.3 UpdateGatewayModel

Post: /api/interface/v1/GatewayModel/{gatewayModelId}

7.3.3.1 Domain

Request

The function will edit the GW model.

Fields Type Description

Name String The model name

Manufacturer String The manufacturer name

34

Response

Fields Type Description

gatewayModelStatus Enum Status (Active, Inactive,
DocumentationRequired)

7.3.3.2 Business Rules

ErrorCode Error Text

0

1 GW Model not existsing for account

2 GW Model name is already existing or empty

3 GW Manufacturer name is empty

4 GW Model name already exists for account

100 Unexpected error

7.3.4 ActivateGatewayModel

Post: /api/interface/v1/GatewayModel/{gatewayModelId}/activate

7.3.4.1 Domain

Request

No Parameter. The function will put the GW model to active.

Response

7.3.4.2 Business Rules

ErrorCode Error Text

0

1 GW Model ID not existing for current account

2 GW Model status is already active

100 Unexpected error

7.3.5 DesactivateGatewayModel

Post: /api/interface/v1/GatewayModel/{gatewayModelId}/deactivate

35

7.3.5.1 Domain

Request

No Parameter. The function will put the GW model to inactive.

Response

7.3.5.2 Business Rules

ErrorCode Error Text

0

1 GW Model ID not existing for current account

2 GW Model status is already inactive

100 Unexpected error

7.3.6 UpdateGatewayModelDocuments

Post: /api/interface/v1/GatewayModel/{gatewayModelId}/documents

7.3.6.1 Domain

Request

36

Response

7.3.6.2 Business Rules

No specific business rules

37

7.4 Gateway Management

7.4.1 GetGatewayList

Get: /api/interface/v1/Gateway

7.4.1.1 Domain

Request

No Parameter. The account is deduced from the authentication.

Response

Fields Type Description

BusinessID String Gateway Business ID

SerialNumber String Gateway SN
Status Enum Status (Active, Inactive)

CreatedOn DateTime Creation date and time
LastHeartbeatDate DateTime Last Heartbeat Received date and

time
SWVersion String Software version
FWVersion String Firmware version

HeartbeatConnectionStatus Enum Connection Status (NotConnected,
ConnectionFailed, Connected,
ConnectionRequested)

LinkedEndpoints Array of
Endpoint

CertificateStatus Enum Certificate status enum
(TokenRequested, TokenReceived,
TokenRejected, CertificateReceived,
CertificateRegistered,
CertificatedRevoked)

CertificateEndDate DateTime Certificate Validity until date and time
GatewayModelID String The Gateway Model Id
TimeSyncStatus Enum Time sync status

(InsufficientResponse,
UnacceptableLatency,
TimeSyncSuccessful)

Endpoint

Fields Type Description

HeadpointEAN String Headpoint EAN
Name String Endpoint name
BusinessID String Endpoint business ID
LastCommunicationDate DateTime Last message received

38

7.4.1.2 Business Rules

No specific business rules

7.4.2 CreateGateway

Put: /api/interface/v1/Gateway

7.4.2.1 Domain

Request

Fields Type Description

Serial Number String Gateway Serial
Number

GatewayModelID String Gateway Model ID

Response

Fields Type Description

GWBusinessID String GW Bus ID

39

7.4.2.2 Business Rules

ErrorCode Error Text

0

1 GW Model ID unknow for this account

2 Serial Number already existing for this
account

100 Unexpected error

7.4.3 EditGateway

Post: /api/interface/v1/Gateway/{gatewayBusinessId}

7.4.3.1 Domain

Request

Fields Type Description

Serial Number String Gateway Serial Number
GatewayModelID String Gateway Model ID

Response

7.4.3.2 Business Rules

ErrorCode Error Text

0

1 GW Business ID not existing for current
account

2 GW Serial Number is already existing for
another GW

3 GW Model ID not existing for current account

100 Unexpected error

7.4.4 ActivateGateway

Post: /api/interface/v1/Gateway/{gatewayBusinessId}/activate

40

7.4.4.1 Domain

Request

No Parameter. The function will put the Gateway status to active.

Response

7.4.4.2 Business Rules

ErrorCode Error Text

0

1 GW Business ID not existing for current account

2 GW status is already active

100 Unexpected error

7.4.5 DeactivateGateway

Post: /api/interface/v1/Gateway/{gatewayBusinessId}/deactivate

7.4.5.1 Domain

Request

No Parameter. The function will put the GW status to inactive.

Response

7.4.5.2 Business Rules

ErrorCode Error Text

0

1 GW Business ID not existing for current account

2 GW status is already inactive

3 GW is currently linked to an EP

100 Unexpected error

7.4.6 RequestCertificateToken

Post: /api/interface/v1/Gateway/{gatewayBusinessId}/certificate

41

7.4.6.1 Domain

Request

Fields Type Description

GatewayBusinessId String Gateway
Business Id

Response

Fields Type Description

VerificationCode String The verification
code

7.4.6.2 Business Rules

42

7.5 System Operator Management

7.5.1 GetSystemOperatorList

Get: /api/interface/v1/SystemOperator

7.5.1.1 Domain

Request

No Parameter.

Response

Fields Type Description

SystemOperators Array of
SystemOperator

List of System
Operators

SystemOperator

Fields Type Description

ID string Id of the System
Operator

Name string Name of System
Operator

VATRegistrationNumber DateTime VAT of System Operator

7.5.1.2 Business Rules

No specific business rules

43

7.6 EndPoint Management

7.6.1 GetEndpointList

Get: /api/interface/v1/Endpoint

7.6.1.1 Domain

Request

No Parameter. The account is deduced from the authentication.

Response

Fields Type Description

HeadpointEAN String Headpoint EAN

System operator String System operator name

Name String Endpoint name

BusinessID String Endpoint business ID

Status enum The endpoint status

LastCommunicationDate DateTime Last message received

Madate Start Date DateTime Mandate start date

Mandate End Date DateTime Mandate end date

Active service Boolean Is an active service
present on EP

7.6.1.2 Business Rules

No specific business rules

44

7.6.2 CreateEndpoint

Post: /api/interface/v1/Endpoint/{headpointEAN}

7.6.2.1 Domain

Request

Fields Type Description

headpointEAN String HeadPoint EAN

FriendlyName String EP Friendly Name

SystemOperatorId String System Operator Id

AccessHolder boolean Are you the contract access
Holder (true/ false)

CPDesignationDocument PDF
(optional)

CP Designation document

Response

The response contains the endpoint business id and error code & text.

Fields Type Description

BusinessID String Endpoint business ID

7.6.2.2 Business Rules

ErrorCode Error Text

0

1 EAN format invalid

2 EP Friendly name is already in use or empty

3 System operator is unknown

4 AccessHolder or CP Designation document needed

5 Document extension not allowed

100 Unexpected error

7.6.3 EditEndpoint

Post: /api/interface/v1/Endpoint/{endpointBusinessId}

7.6.3.1 Domain

Request

Fields Type Description

endpointBusinessId String EP Business ID

friendlyName String EP friendly name

45

cpDesignationDocument String
(optional)

Communication Platform
DesignationDocument

Response

The response contains only error code and error text.

7.6.3.2 Business Rules

ErrorCode Error Text

0

1 EP Business ID not existing for current account

2 EP status is inactive

3 No new information provided (FriendlyName and CPUser Doc empty)

4 Incorrect format of the CP User Doc

5 Friendly name is already in use for headpoint

100 Unexpected error

7.6.4 ActivateEndpoint

Post: /api/interface/v1/Endpoint/{endpointBusinessId}/activate

7.6.4.1 Domain

Request

No Parameter. The function will put the Endpoint status to active.

Response

7.6.4.2 Business Rules

ErrorCode Error Text

0

1 EP Business ID not existing for current
account

2 EP status is already active

100 Unexpected error

46

7.6.5 DeactivateEndpoint

Post: /api/interface/v1/Endpoint/{endpointBusinessId}/deactivate

7.6.5.1 Domain

Request

No Parameter. The function will put the Endpoint status to inactive.

Response

7.6.5.2 Business Rules

ErrorCode Error Text

0

1 EP Business ID not existing for current account

2 EP status is already inactive

3 EP is currently linked to a GW

4 EP is currently linked to a endpoint service

100 Unexpected error

7.6.6 MoveEndpoint

Post: /api/interface/v1/Endpoint/{endpointBusinessId}/move/{newHeadpointEAN}

7.6.6.1 Domain

Request

Fields Type Description

endpointBusinessId String EP Business ID

newHeadpointEAN EAN New Headpoint EAN

accessHolder Boolean Are you the contract access holder
(true/false)

systemOperatorId string The system operator id

cpDesignationDocument String
(optional)

Communication Platform Designation
Document

47

Response

7.6.6.2 Business Rules

ErrorCode Error Text

0

1 EAN format invalid

2 EP not existsing for current account

3 System operator is unknown

4 AccessHolder or CP Designation document needed

100 Unexpected error

7.6.7 LinkEndpointToGateway

Post: /api/interface/v1/Endpoint/{endpointBusinessId}/link/{gatewayBusinessId}

7.6.7.1 Domain

Request

Fields Type Description

endpointBusinessId String EP Business ID

gatewayBusinessId Date GW Business ID

Response

48

7.6.7.2 Business Rules

ErrorCode Error Text

0

1 GW Business ID not existing for current account

2 GW status is inactive

3 EP Business ID not existing for current account

4 EP status is inactive

5 EP is already coupled to another GW

6 GW is already coupled to another EP in another
HP

100 Unexpected error

7.6.8 DecoupleEndpointFromGateway

Post: /api/interface/v1/Endpoint/{endpointBusinessId}/decouple/{endDate}

7.6.8.1 Domain

Request

Fields Type Description

endpointBusinessId String EP Business ID

endDate Date Date of decoupling

Response

7.6.8.2 Business Rules

ErrorCode Error Text

0

1 EP Business ID not existing for current account

2 EP is not coupled to any GW

3 Date of decoupling has to be in the future

100 Unexpected error

49

7.6.9 ReplaceGateway

Post: /api/interface/v1/Endpoint/{endpointBusinessId}/replace/{gatewayBusinessId}/{replacementDate}

7.6.9.1 Domain

Request

Fields Type Description

endpointBusinessId String EP Business ID

gatewayBusinessId String GW Business ID

replacementDate Date Date of replacement

Response

7.6.9.2 Business Rules

ErrorCode Error Text

0

1 EP Business ID not existing for current account

2 GW Business ID not existing for current account

3 EP is inactive

4 EP is not linked to any GW at the moment

5 GW is already linked to another HP

100 Unexpected error

50

7.7 Data Source / Statistics

7.7.1 GetDashboardStatistics

Get: /api/interface/v1/DataSource/active/metrics

7.7.1.1 Domain

Request

No Parameter.

Response

Fields Type Description

ActiveEndpointServiceConnectedNumber int Number of active
data source with
Active Service that
are Connected

ActiveEndpointServiceConnectedPercentage double Percentage of active
data source with
Active Service that
are Connected (value
between 0 and 1)

ActiveEndpointServiceNotConnectedNumber int Number of active
data source with
Active Service that
are Not Connected

ActiveEndpointServiceNotConnectedPercentage double Percentage of active
data source with
Active Service that
are Not
Connected (value
between 0 and 1)

TotalActiveEndpointServiceNumber int Total number of
active data source
with active service

NotActiveEndpointServiceConnectedGatewayNumber int Number of active
data source without
Active Service that
are Connected

NotActiveEndpointServiceConnectedGatewayPercentage double Percentage of active
data source without
Active Service that
are Connected (value
between 0 and 1)

NotActiveEndpointServiceNotConnectedGatewayNumbe
r

int Number of active
data source without
Active Service that
are Not Connected

51

NotActiveEndpointServiceNotConnectedGatewayPercent
age

double Percentage of active
data source without
Active Service that
are Not
Connected (value
between 0 and 1)

TotalNotActiveEndpointServiceNumber int Total number of
active data source
without active service

TotalActiveEndpointNumber int Total number of
active data source

7.7.1.2 Business Rules

No specific business rules

7.7.2 GetEndpointStatistics

Put: /api/interface/v1/Endpoint/Statistics

7.7.2.1 Domain

Request

Fields Type Description

periodStart DateTime Start of the statistic
period

periodEnd DateTime End of the statistic
period

endpointBusinessIds Array of string List of EP Business ID's

52

.

Response

Receive a collection of Gateway statistics.

Response:

Fields Type Description

periodStart DateTime Start of the statistic period

periodEnd DateTime End of the statistic period

endpointStatisticArray EPStatistic EP Statistics

EPStatistic

Fields Type Description

EP Busines ID string EP Business ID

LastReceivedMessage DateTime Last Received Message

NrSuccesfullMessages int Messages with successful
status

NrUnsuccesfullMessages int Messages with other status

7.7.2.2 Business Rules

The EP array size is currently limited to 50

The maximum length of the statistic period is 24h located in the last 3 monthes.

ErrorCode Error Text

0

1 EP Business ID not existing for current account

2 EP Business ID not existing for current account for current interval

53

3 EP Business ID status is inactive

100 Unexpected error

7.7.3 GetGatewayStatistics

Put: /api/interface/v1/Gateway/statistics

7.7.3.1 Domain

Request

Fields Type Description

GatewayBusinessIds Array of string List of GW Business ID's

Response

Receive a collection of Gateway statistics.

Response:

Fields Type Description

GWStatisticArray GWStatistic GW Statistics

GWStatistic

Fields Type Description

GW Busines ID string GW Business ID

LastHearbeatReceived DateTime Last Heartbeat Received

7.7.3.2 Business Rules

The GW array size is currently limited to 50

54

ErrorCode Error Text

0

1 GW Business ID not existing for current
account

2 GW Business ID status is inactive

100 Unexpected error

55

7.8 Business Rules

The following business rules will be implemented according to the used method.

7.8.1 All indicated time is in UTC

All time is in UTC. Period start are included, period end is excluded.

56

8 Annexes

8.1 Product messages

For each product, separate message are defined. These all use the common header and encryption
as defined in 4.2.2

8.1.1 aFRR body

Element Data
Type

Origi
n

Description

SDP –
SDP EAN

String SCADA
/ FSP BE

The aFRR service delivery point EAN number.

DPM –
DPmeasured

Decimal
(JSON)

Meteri
ng
device

The instantaneous net (gross if the net value
cannot be measured) power measurement (in
MW) per delivery point.

DPB –
DPbaseline

Decimal
(JSON)

SCADA
/ FSP BE

The power (in MW) that the delivery point would
have injected/consumed without the activation
of aFRR service. The baseline is sent 60 seconds
in advance.

AS –
DPaFRR

Integer
(JSON)

SCADA
/ FSP BE

This is a logical (0 or 1) signal that indicates
whether the delivery point is delivering the
service for the concerned timeframe.

PS –
DPaFRR,
supplied

Decimal
(JSON)

SCADA
/ FSP BE

The number of MW of ΔPsec_tot4 that is
attributed by the BSP to the delivery point in
question.

MTS –
Measure
timestamp

Ticks
(UTC)

Meteri
ng
device /
gatewa
y

The datetime on which the snapshot of the
Pmeasured is taken. The Pbaseline in this
message represents its value for this timestamp
+ 1 minute in the future. As described in
paragraph 3, this timestamp has to be an exact
multiple of 4 seconds (without some ms delay).

8.1.2 FCR body

Messages from technical units under a virtual delivery point can be sent at the timestamps of the
aggregated signal in an event driven manner, so that only deviations are communicated towards the

communication platform. In case of no deviations, a refresh value should be sent each 5 minutes.

Element Data
Type

Origin Description

SDP –

SDP EAN
String SCADA / FSP BE The deviceId of the participating unit

DPM –
DPmeasured

Decimal
(JSON)

Metering device The instantaneous net (gross if the net
value cannot be measured) power

57

measurement (in MW) per delivery
point.

MTS –
Measure
timestamp

Ticks (UTC) Metering device
/ gateway

The datetime on which the snapshot of
the measured object is taken

