DISCLAIMER

These slides are provided for reference only. Due to the evolving nature of the workshop preparations, it cannot be guaranteed that the figures included in these slides are perfectly aligned with the assumptions submitted. In case of inconsistency between figures in these slides and figures in the documents submitted, the documents should be considered.

Taskforce Multi-Energy Scenarios

Final Workshop - Consultation outcomes

Elia-Fluxys

28/10/2025

DISCLAIMER

Please note that this presentation provides only an overview of the main non-confidential comments.

All feedback has been carefully considered in the analysis.

The full set of non-confidential feedback and detailed context will be available in the consultation report.

In this presentation comments can be abbreviated for the sake of timing. Please always refer to the full comment of the stakeholder to appreciate the full context of the response.

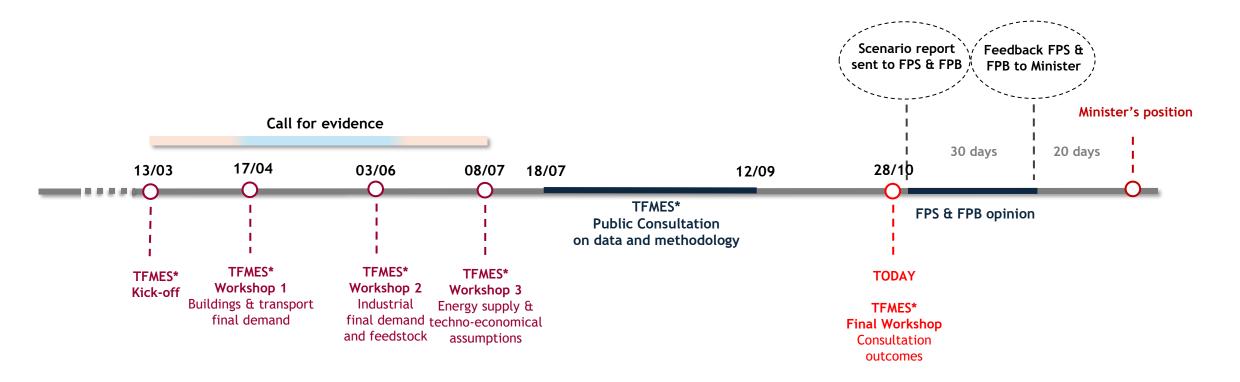
Agenda of the meeting

Introduction

Scenarios and sensitivities

Final energy demand

Energy supply


Greenhouse gas emissions

Other and assumptions for EU

Timeline scenario's creation

2025

This process was conducted in parallel with bilateral discussions, Synergrid-level meetings (7) and several joint 'Comité de Concertation' sessions (3).

What will the scenarios be used for? Federal Development Plan of the electrical transmission grid

Elia publishes its Federal Development Plan (FDP) every 4 years

Horizon: +10 years

Scope: the Belgian federal electricity transmission grid (110 – 380 kV + HVDC)

Next one to be approved by: the Federal Energy Minister (Mathieu Bihet)

Most recent version: FDP 2024-2034, approved on 5 May 2023

Next version FDP for submission in February 2027

Scenarios: projections assessed up until 2050

System needs: identification of grid needs ad mid- and long term

Investments: all planned grid investments, at federal level

Environmental impact: through Strategic Environm. Assessment

Roadmap

INDICATIVE INVESTMENT PLAN FLUXYS BELGIUM & FLUXYS LNG 2025-2034

September 2025

What will the scenarios be used for? National Development Plan of the hydrogen network

Fluxys publishes its Indicative National Development Plan (NDP) every year

Horizon: +10 years

Scope: Fluxys Belgium & Fluxys LNG

Most recent version: Indicative NDP 2025-2034, published in September 2025

Next version*: Hydrogen NDP 2028-2037, for submission in July 2027

Scenarios: projections assessed up until 2040

System needs: identification of network needs ad mid- and long term

Investments: all planned network investments, at national level

Environmental impact: through Strategic Environm. Assessment

Roadmap

New and important information became available after the launch of the public consultation

New announcements since launch public consultation (18/07/2025)

- FL government: Updated **VEKP** (18/07/2025)
 - Including additional measures to reach -40% ESR objective by 2030 (previous assessment only reached -32%)
- FL government: Programmanota 2026-2030: 'Klimaatsprong voor de industrie -Transitieprogramma voor een koolstofarme en competitieve energie-intensieve industrie tegen 2050' (18/07)
- Federal government: agreement on contribution to NECP (21/07)
- Federal government: supports the -90% EU GHG emissions reduction target at EU level (21/07)
- EU-US trade deal: 15% tariffs on most goods + 250 Bn/y energy purchase commitment (27/07)
- Federal government: wants to start **Tihange 1 extension negotiations** (19/08)
- Federal government + regions: consolidated NECP for Belgium (06/10/2025)

Reminder of scenarios which were submitted to consultation

Demand

three scenarios

Fulfilling the same level of useful demand with different energy vectors

Current commitments & ambitions - 'BASE'

announced targets, policies, existing trends and governmental ambitions

Accelerated electrification - 'ELEC'

- high levels of electrification in all sectors
- molecules are applied in hard to electrify sectors
- CCUS is mainly applied for the abatement of industrial process emissions.

New molecules + CCUS - 'MOL'

- electrification limited and at slower pace
- molecules remain important in most sectors
- CCUS is crucial for the abatement of both industrial processes and combustion emissions

NEW

Sufficiency sensitivity

Reminder of scenarios which were submitted to consultation

Electricity generation

one scenario + three sensitivities

Central scenario announced targets, policies, existing trends and governmental ambitions Local sensitivity more decentral renewable energy production lower ambitions for nuclear and non-domestic offshore Large-scale sensitivity higher ambitions for nuclear and non-domestic offshore **FLEX+ sensitivity**

Very high yet credible levels of flexibility

Due to the complexity of certain simulations, it's not feasible to run hundreds of scenarios/sensitivities. Likewise, the combinations of supply and demand scenarios must be carefully selected, and depending on the focus of the analysis, the BASE demand and CENTRAL supply will be analysed and additional specific combinations of demand-supply can be explored in the NDPs. Those can also be complemented with sensitivities. The combination and relevant sensitivities are proposed to be discussed within the Comité de Collaboration of the respective plans

Overview

Overview of documents submitted to public consultation

Scenarios, methodologies & data

General document describing the context, methodologies, scenarios assumptions

Excel file with quantitative inputs and assumptions per sector for each scenario

Electricity methodology

Modelling approach to be used in the national development plan for electricity

Public consultation

18 July

12 September

Feedback received to public consultation

23 stakeholders with non-confidential feedback

Alfaport VOKA	EDORA	negaWatt
BBL Canopea	ENGIE	ODE Vlaanderen
Belgian Hydrogen Council	Essenscia	ORES
Belgian Offshore Platform	EV Belgium	TotalEnergies
Bnewable	FEBEG	Vlaamse Nutsregulator
BSTOR	FEBELIEC	Vlaamse Regering
COGEN	Fevia	Gouvernement wallon
CREG	Karno.Energy	

+ multiple stakeholders with confidential feedback

Feedback received to public consultation

More than 230 non-confidential comments

Topics

Scenarios and sensitivities

Final energy demand

Other elements to be considered in the consumption of electricity - Data centers & CCS demand

Energy supply

Electricity supply

Molecule supply

Greenhouse gas emissions

Other and assumptions for EU

Topics

Scenarios and sensitivities

Final energy demand

Overall scenario results

Building demand

Transport demand

Industry demand

Other elements to be considered in the consumption of electricity - Data centers & CCS demand

Energy supply

Electricity supply

Molecule supply

Greenhouse gas emissions

Other and assumptions for EU

Suggested scenarios and sensitivities by stakeholders

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

Final Energy demand

Scenarios

- Behind the targets scenario (not net zero emissions in 2050)
- Sufficiency measures in the main scenarios
- Sufficiency scenario/sensitivity
- POLICY scenario based on latest ECPs objectives
- Question the MOL scenario
- Only small differences between ELEC, BASE & MOL
- All scenarios are optimistic regarding the energy transition (Essenscia)

Stakeholders who suggested it

FEBELIEC

BBL - Canopea, negaWatt

EDORA, BBL-Canopea, CREG

BBL - Canopea

BBL-Canopea, EDORA

Belgian Hydrogen Council

Essenscia

Changes since the public consultation

Sufficiency

Some sufficiency levers are already included in the scenarios (details are given by subsectors), a more extensive set of sufficiency levers are proposed in an additional sufficiency sensitivity (see later)

Datacenter+

The high datacenter trajectory of BCG will be included to analyse the impact of a potential rapid development

Note that a low trajectory is included in the sufficiency scenario

Delayed transition scenario?

Some stakeholders inquired the addition of a lower ambitions/delayed scenario and/or the inclusion of less ambitious assumptions

Stakeholders who explicitly request such a scenario:

Febeliec strongly recommends that, in addition to a net-zero scenario, a 90% emission reduction scenario be included. This would allow stakeholders and policy makers to better understand the marginal costs and system impacts of the final 10% reduction within the grid development plan. [...]

[...]

Essenscia

FEBELIEC

Delayed transition scenario: Apart from the optimistic scenarios and considering the large uncertainty ahead, we would suggest also exploring scenarios where the energy transition (and therefore the demand for low-carbon energy carriers) goes slower than hoped for due to technological and economic [...]

Fluxys and Elia fully acknowledge and understand these concerns. However, the framework of the TEN-E Regulation (EU) 2022/869, Transmission System Operators (TSOs) does not foresee the framework to develop or use scenarios that are not aligned with the EU's 2050 climate neutrality objective in the context of the Ten-Year Network Development Plans (TYNDPs).

* TEN-E regulation, article 12 states that the ENTSO scenarios should be compatible with the targets. Is it, legally speaking, an issue to include a scenario not compatible with the targets?

Topics

Scenarios and sensitivities

Final energy demand

Overall scenario results

Building demand

Transport demand

Industry demand

Other elements to be considered in the consumption of electricity - Data centers & CCS demand

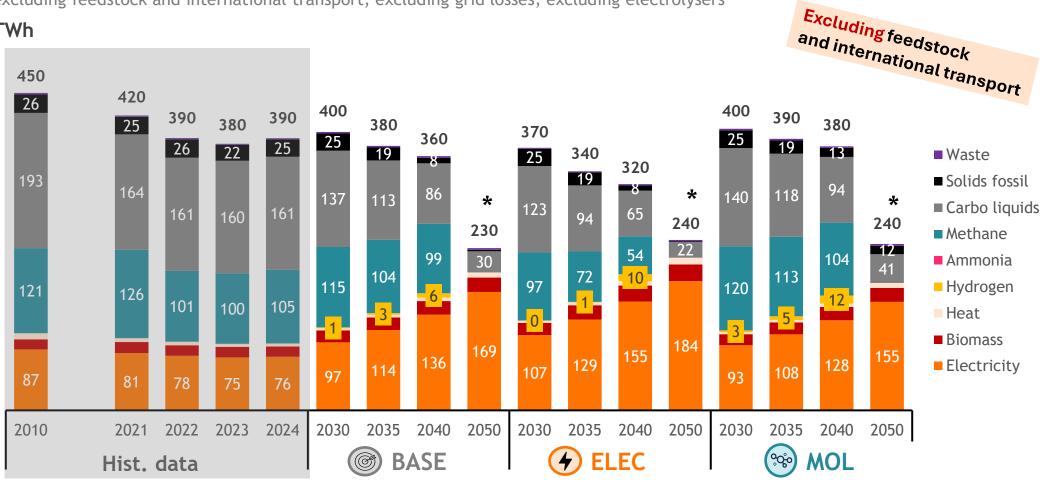
Energy supply

Electricity supply

Molecule supply

Greenhouse gas emissions

Other and assumptions for EU



Comparison of scenarios

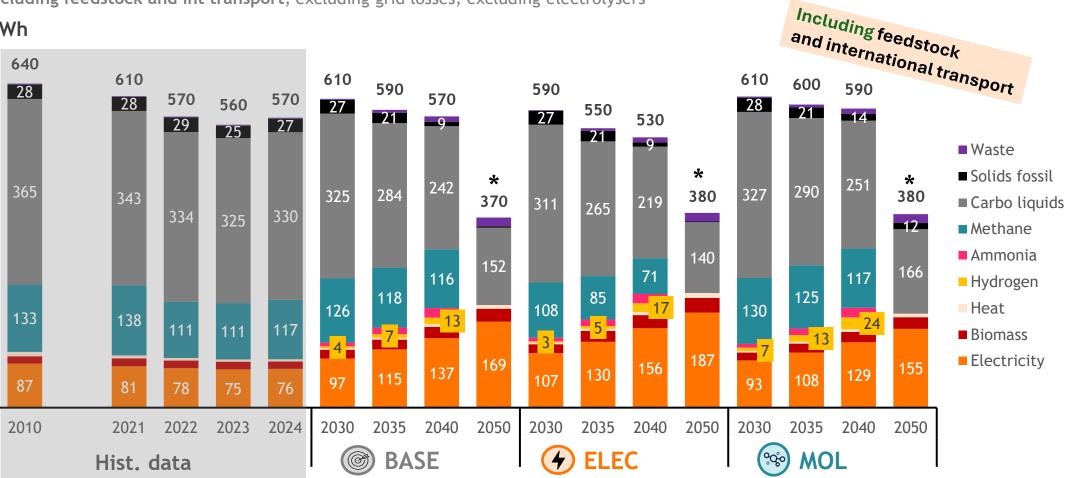
Final energy demand

excluding feedstock and international transport, excluding grid losses, excluding electrolysers

TWh

^{*} Values for methane, ammonia and hydrogen are not shown for 2050 Future values are based on a normalised amount of heating degree days, historical years show real demand (i.e. non normalised) Methane and carbo liquids unspecified fossil, bio or synthetic Biomass only concerns solids

Historical data source: EUROSTAT



Comparison of scenarios

Final energy demand

Including feedstock and int transport, excluding grid losses, excluding electrolysers

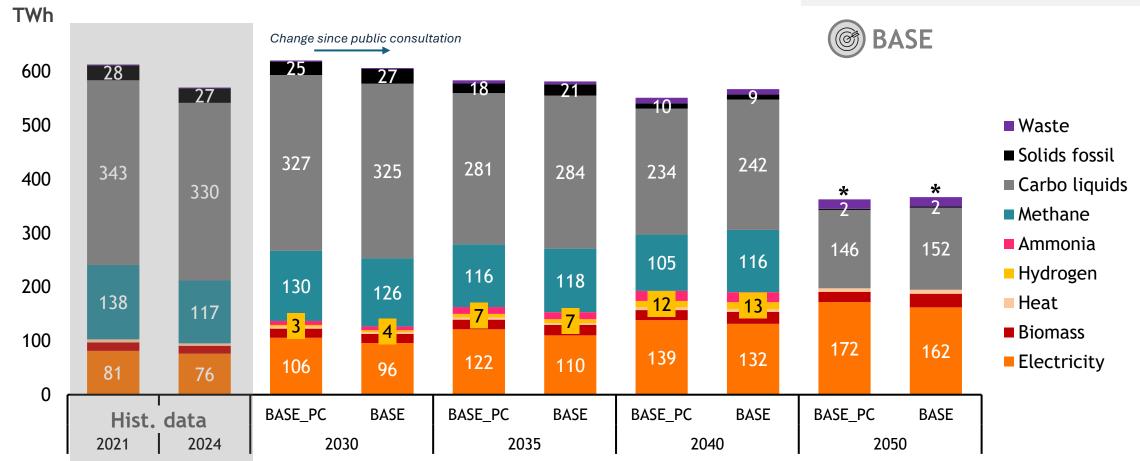
TWh

^{*} Values for methane, ammonia and hydrogen are not shown for 2050 Future values are based on a normalised amount of heating degree days, historical years show real demand (i.e. non normalised) Methane and carbo liquids unspecified fossil, bio or synthetic Biomass only concerns solids

Historical data source: EUROSTAT

Note: known new projects account for a ~35 TWh increase between 2024 and 2030

 ~8 TWh for energy ~27 TWh for feedstock


Overall impact on final energy demand since public consultation

Final energy demand

Historical data source: EUROSTAT

Including buildings, transport, industry, agriculture, feedstock, refineries, international transport excluding grid losses, demand for CCS, electrolysers

2024 is the reference year used to compute the future demand for 2030-2035
2021 is the reference year used to compute the demand for industry as of 2040

^{*} Values for methane, ammonia and hydrogen are not shown for 2050
Future values are based on a normalised amount of heating degree days, historical years show real demand (i.e. non normalised)
Methane and carbo liquids unspecified fossil, bio or synthetic
(for example: historical values include bio diesel & gasoline blend)
Biomass only concerns solids

Sufficiency sensitivity is added in the scenario framework

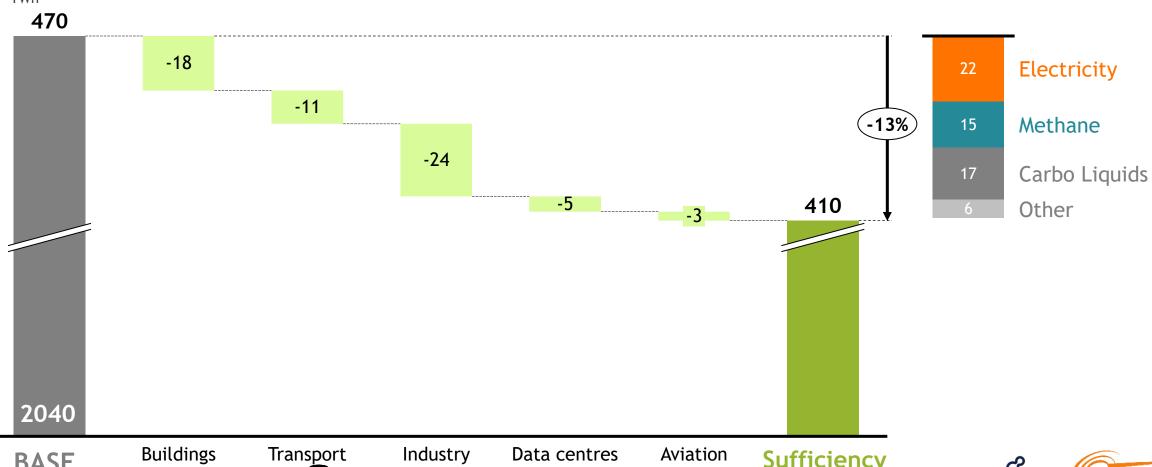
BBL - Canopea, negaWatt, proposed to include sufficiency measures directly in the main senarios (not a sensitivity) EDORA, BBL-Canopea, CREG ask for a sufficiency scenario/sensitivity

Elia and Fluxys performed a thorough deepdive on the regional energy and climate plans, policies and trends and follow the forthcoming PlanBureau publication when it comes to the evolution of useful demand in transport and buildings.

An additional sufficiency sensitivity is now explicitly quantified and included in the scenario report, including different levers per sector

Levers included in the sufficiency sensitivity:

RESIDENTIAL 🏫	TERTIARY I	TRANSPORT 🚗	INDUSTRY ##
Lower residential surface per capita	Lower tertiary surface	<u>National</u>	Non-metallic minerals: lower cement per capita
	Lower temperature set-point	Change in modal share	
Lower temperature set-point	for space heating		Chemicals: reduction of single
for space heating		Increase in occupancy	use plastics and material
	Lower hot water needs		substitution
Lower hot water needs		Speed limit decrease	
	Lower space cooling needs		Iron & Steel: lower use of steel
Lower space cooling needs		Reduce vehicle mass and front	
	Turn off the lights	area	Oil refineries: reduction of oil
Turn off the lights			products in transport
		International aviation	
Lower use of appliances			
		Reduce number of flights	- C
'			fluxys 6


Sufficiency sensitivity is added in the FOP scenarios

Sufficiency measures could lead to a 13% lower final energy demand by 2040

Impact on final energy demand in 2040

Excluding feedstock, grid losses and electrolysers

TWh

Overall scenario results - Molecules - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholders comment.

Hydrogen

Hydrogen demand too low compared to today

Evolution of the Hydrogen consumption not ambitious

Stakeholders who suggested it

ENGIE, CREG

ENGIE

Historical value Methane

Methane demand is different in historical values compared to SPF data

ENGIE, FEBEG

Overall Molecules results

ENGIE and CREG suggested that hydrogen demand is too low compared to current values

ENGIE suggested that the evolution of the hydrogen consumption is not ambitious compared to other studies

ENGIE and FEBEG mentioned that there is differences between the historical value shown for methane consumption and those from the FPS

All grey SMR hydrogen is included within the CH4 volumes. Therefore, the proposed $\rm H_2$ values should be interpreted as low-carbon and renewable hydrogen and do not reflect the total hydrogen demand, especially in the short term.

For the short term, the H2 values are aligned with Fluxys' estimation of the market interest. Furthermore, hydrogen derivatives are shown separately, such as ammonia, and also as part of the share of carbon-based liquids. The dimensioning of the hydrogen network will be determined by H2 transport for final demand and feedstock, for potential production of e-fuels and for transit to neighboring countries.

The values for historical methane demand from the FPS mentioned include feedstock and don't include refineries. Conversely, the historical values shown in the overall final energy demand results consider the demand from refineries and not the demand for feedstock. Also, the methane energy shown includes biogas (+=- 1.1 TWh in 2021). Finally, it must be noted that the values in the consulted excel were rounded to 0.1 precision per sector and energy vector, their aggregation could lead to small delta's.

Topics

Scenarios and sensitivities

Final energy demand

Overall scenario results

Building demand

Transport demand

Industry demand

Other elements to be considered in the consumption of electricity - Data centers & CCS demand

Energy supply

Electricity supply

Molecule supply

Greenhouse gas emissions

Other and assumptions for EU

Residential - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

Renovation rate

Take the same renovation rate for all scenarios

ELEC should be more optimistic than BASE

Official renovation rate doesn't include all types, definition is too narrow; it should also include shallow

Stakeholders who suggested it

ORES, BBL - Canopea

CREG, EDORA

BBL-Canopea

New dwellings rate

Should follow regional evolution of population/households + rate should decrease over time

Take 0.8% for Wallonia

BBL - Canopea, CREG

ORES

Size of new dwellings

Soft densification should be considered, reduction of m² per dwelling

BBL - Canopea, CREG

Useful demand of space heating

Reference value is too low

ORES

Space heating of new dwellings

Useful demand should be constant.

Vlaamse Regering

Residential - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

Efficiency of heating appliances

Stakeholders who suggested it

Gas boiler efficiency is too low

ORES

Heat pump efficiency is too high

ORES

District heating efficiency is too high

ORES

PEB4: no more fossil heat from 2040

Heating appliances evolution

Reach full decarbonized heating stock by 2050, no gas in 2050

EDORA

No molecules in 2050, all low-T° heat should be electrified

FEBELIEC

Heat pumps projections are optimistic in the short term

CREG

District heating should be higher
 BBL - Canopea

Support ELEC scenario
 ODE Vlaanderen

Suggestion of references for district heating Karno. Energy

Suggestion on evolution of direct electricity appliances
 Vlaamse Regering

Suggestion on evolution of heat-pumps
 Vlaamse Regering

Suggestions on the phase out of oil and gas boilers
 Gouvernement wallon

Biomass boilers should remain Gouvernement wallon

Changes since the public consultation

Renovation rate

Same for all scenarios and values from forthcoming Federal Planning Bureau study.

New dwellings surface

Based on historical values from Statbel and kept constant, following most recent trend.

Useful demand of space heating

Regionalization has been adapted .

Reference year

Use 2024 (normalized) as a starting point to evaluate the residential demand and take latest behaviour into account.

New dwellings evolution

Methodology adapted to follow evolution of households published by Federal Planning Bureau.

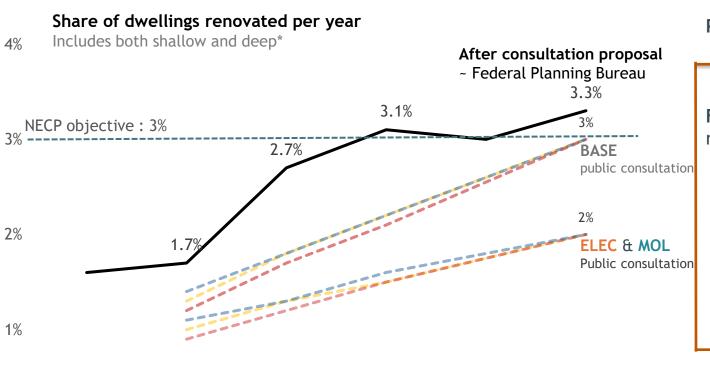
Efficiency of heating appliances

Efficiencies of combustion-based appliances has been adapted.

Space heating of new dwellings

A constant demand [kWh/m²] is used instead of a decreasing demand.

Heating appliances


Share of technologies adapted for water and space heating: improved regionalization and incorporation of latest regional policies & inputs.

Evolution of renovations - Residential & Tertiary

- ORES, BBL, Canopea In favor of taking the same renovation rate in all scenarios
- CREG, EDORA Mentioning ELEC should be the optimistic one and not have a lower renovation rate compared with BASE

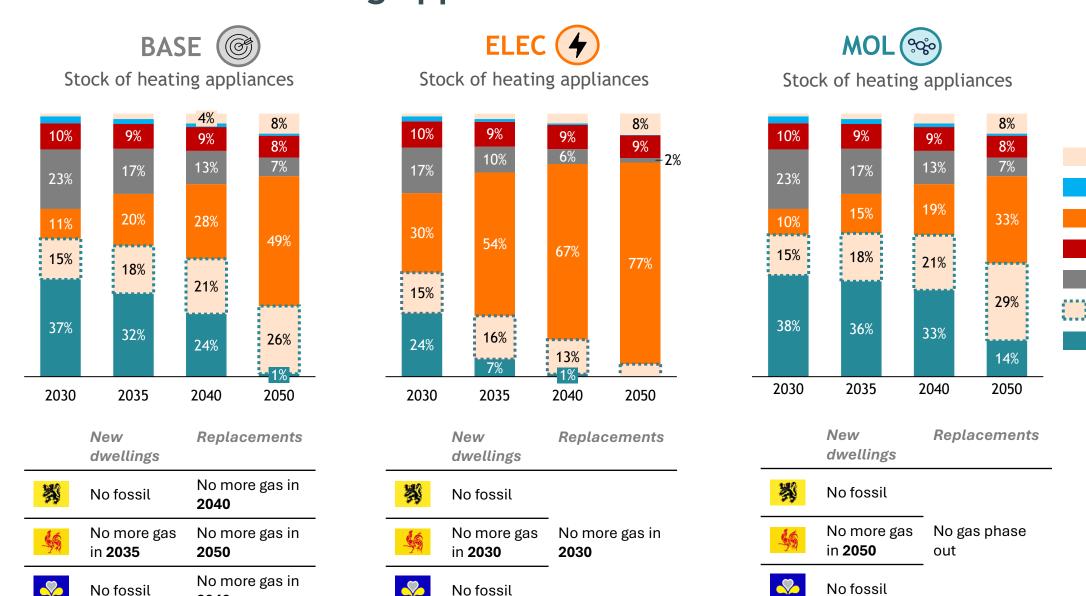
Take the new renovation rates from the forthcoming study of **Federal Planning Bureau** for all scenarios.

Public consultation FOP:

- BASE: linear trajectory to reach 3% in 2050
- MOL/ELEC: linear trajectory to reach 2% in 2050

Federal Planning Bureau proposes a new trajectory for renovation rates in a forthcoming study.

- 3.1% in 2040 and 3.3% in 2050
- Non-linear trajectory: efforts in the short term


To be noted:

This assumption has a direct impact on the thermal demand of space heating (independent from the chosen technologies).

Less dwellings will be renovated in the ELEC/MOL scenario and thus the thermal demand for dwellings will be higher than for the BASE scenario.

2040

Evolution of heating appliances - residential sector

District heating

Direct electricity

Hybrid systems*
= gas boiler + air-air HP

Assumptions

considered to

estimate

evolution of

heating stock

HPs

Biomass

Oil boilers

Gas boilers

Changes since the public consultation

Renovation rate

Same for all scenarios and values following Federal Planning Bureau.

Useful demand of space heating

Regionalisation has been adapted.

Efficiency of heating appliances

Efficiencies of combustion-based appliances has been adapted.

Reference year

Use 2024 (normalized) as a starting point to evaluate the residential demand and take latest behavior into account.

Space heating of new buildings

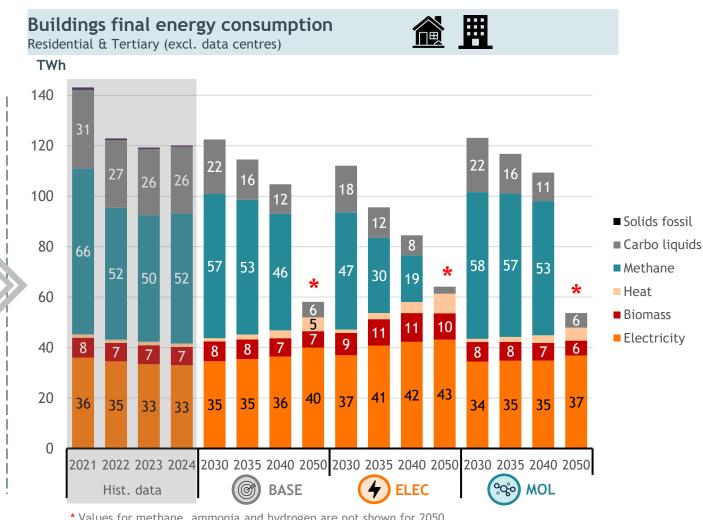
A constant demand [kWh/m²] is used instead of a decreasing demand.

Heating appliances

Share of technologies adapted for water and space heating: improved regionalization and incorporation of latest regional policies & inputs.

Final energy consumption for buildings sector

No more gas boilers installed in new dwellings from 2025 in Flanders and Brussels, and from 2035 in Wallonia. No constraints on renovated dwellings but decreases to reach no more gas boilers installed in 2040 (exception for Wallonia: 2050).



No more gas boilers installed from 2030 in all buildings No more gas boilers in new dwellings from 2025 in Flanders and Brussels, and from 2030 in Wallonia.

Gas boilers remain installed in all regions until 2050 in existing dwellings

No more gas boilers in new dwellings from 2025 in Flanders and Brussels, no constraint in Wallonia, decrease until 2050.

* Values for methane, ammonia and hydrogen are not shown for 2050 carbo liquids & methane unspecified fossil, bio or synthetic Historical values are actual demand, projections show normalized demand

Topics

Scenarios and sensitivities

Final energy demand

Overall scenario results

Building demand

Transport demand

Industry demand

Other elements to be considered in the consumption of electricity - Data centers & CCS demand

Energy supply

Electricity supply

Molecule supply

Greenhouse gas emissions

Other and assumptions for EU

National transport - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholders comment.

Evolution of transport needs

Consider modal shift towards light mobility

Occupancy will increase for cars & buses

MOL is not realistic

Agree to use BfP values

Question BfP values, refer to SPF study made by Climact

Decrease km traveled for light transport by 2030

Decrease km traveled for heavy transport by 2030

Evolution of technologies

Higher BEV cars trajectory

Lower BEV cars trajectory

Efficiency is too low

Efficiency could be higher in the future

Use the federal blending percentages of biofuels

Stakeholders who suggested it

BBL-Canopea

CREG

BBL-Canopea, EDORA

EDORA

BBL-Canopea

Vlaamse Regering

Vlaamse Regering

FEBELIEC, EV Belgium

CREG

CREG

EV Belgium

Vlaamse Regering

National transport - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholders comment.

Vans & Trucks

Higher amount of BEV vans and trucks

Lower amount of BEV vans

Freight transport almost entirely electrified before 2050, to consider in BASE & ELEC

Following European AFIR regulation, Walloon region will have to install a large number of fast charging infrastructure

Buses

Public buses (TEC) estimated to be 35%-40% BEV by 2040

Stakeholders who suggested it

BBL-Canopea, EV Belgium

ORES, Vlaamse Regering

EDORA

Gouvernement wallon

Gouvernement wallon

Changes since the public consultation

Evolution of transport needs & modal share

The Bureau Fédéral du Plan shared values regarding the evolution of transport needs and modal share behind their forthcoming study.

BASE, ELEC and MOL scenarios were updated.

Rail energy consumption

Updated based on direct inputs.

BEV cars efficiency

reduced in 2050 following feedback and literature review of assumptions made in other publications.

Two-wheelers

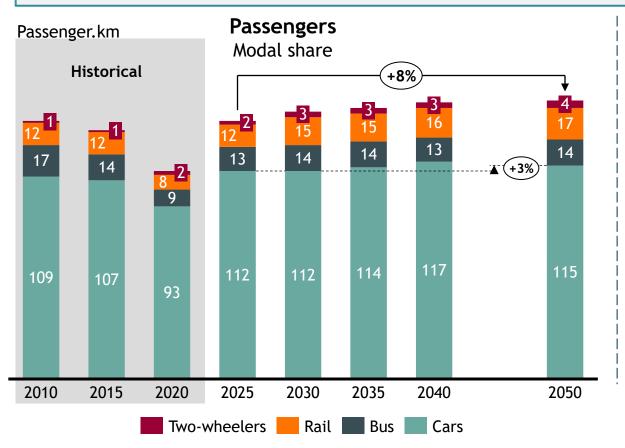
Modelisation of two-wheelers was added, following the Bureau Fédéral du Plan's values (forthcoming).

Loading factors

Cars, vans and trucks segments' loading factors (in pass./km and ton/km) were calibrated so that the billion of km driven by each segment are aligned with the historical evolution provided by FEBIAC source.

BEV share for vans

reduced to align with the latest Flemish VEKP and feedback received from DSOs.

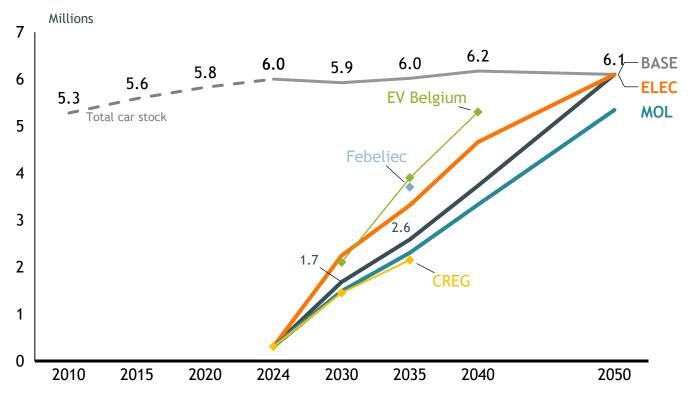

Evolution of transport needs


CREG, BBL-Canopea proposed to include more ambitious evolutions of transport needs & modal shift

Elia and Fluxys propose to follow the forthcoming Federal Planning Bureau publication for the main scenarios, taking into the impact of known policies in the short-term and including a trajectory compatible with decarbonization ambitions in the long term.

This leads to an increase of around +8% passenger transport and +18% freight transport versus a 7% population increase, with transport via road remaining relatively stable.

For the sufficiency scenario, a more ambitious modal share shift is considered.


Source: Forthcoming publication of the Federal Planning Bureau (historical & prospective)

Passenger cars: no large change in assumptions

Some stakeholders proposed higher values (Febeliec, EV Belgium & their stakeholders), CREG proposed lower values **CREG** and **EV Belgium** propose to assume higher efficiencies

Amount of BEV in Belgium

It is proposed to keep the trajectories as they fall in line with within the ranges of the comments received.

The efficiency of passenger cars is increased towards 2050

Key assumptions

BASE: 100% BEV sales from 2035, 2029 for company cars

ELEC: 100% BEV sales from 2030

MOL: 100% BEV sales from 2040, assumes a delay in European ICE phase-out, still ~10% ICE in 2050

constant at 1.25 passenger/car, Passenger rate:

based on historical passenger.km/veh.km

Total car stock: Increase in population is

counterbalanced by modal shifts.

EV efficiency: based on AdegFlex and

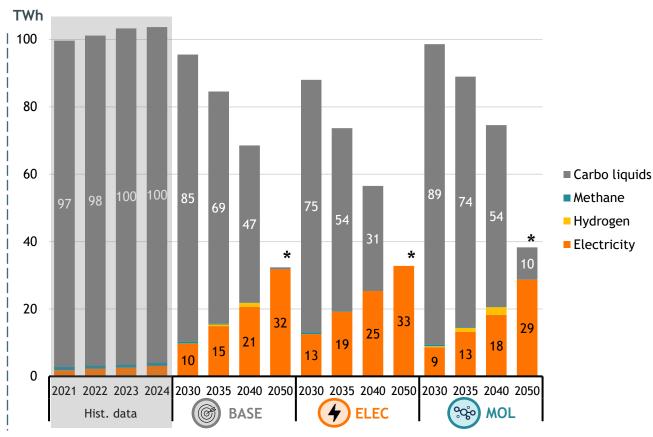
other publications for the long term

Efficiency	2024	2030	2035	2040	2050
kWh/100km	19	18.4	17.9	17.3	16.1

Scenario drivers & resulting energy demand

- 100 % BEV in cars and vans sales in 2030 for all BE.
- Trucks sales are 100 % BEV in 2040. No more ICE road transport in 2050

Energy consumption is fully electric for all segments in 2050.



- 100 % BEV in cars and vans sales in 2035 for all BE.
- Trucks sales are 90 % BEV and 10% hydrogen in 2040.

- 100 % BEV in cars and vans sales in 2040 for all BE, assuming delay in EU legislation. Still ICE cars on the road in 2050
- Trucks sales are 80 % BEV and 20% hydrogen in 2040.

National transport energy demand

^{*} Values for methane, ammonia and hydrogen are not shown for 2050 carbo liquids unspecified fossil, bio or synthetic (for example: in 2023 around ~ 9.5 TWh of bio diesel & -ethanol was blended in transport fuels)

International transport - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholders comment.

General

Are RED III targets properly considered

Shipping

Should be net-zero by 2050

Ammonia should be higher

Walstroom must be included

Aviation

Underestimation of aviation demand

Stakeholders who suggested it

Belgian Hydrogen Council, TotalEnergies

Belgian Hydrogen Council

Belgian Hydrogen Council

Alfaport VOKA

BBL-Canopea

Changes since the public consultation

RED III target

The demand scenarios are not in contradiction with a RED III compliance. Targets can be met depending on the origin of molecules supply.

Onshore Power Supply

Walstroom is now explicitly taken into account, following European AFIR regulation

Ammonia adoption

Share of ammonia was corrected and is now higher.

International shipping

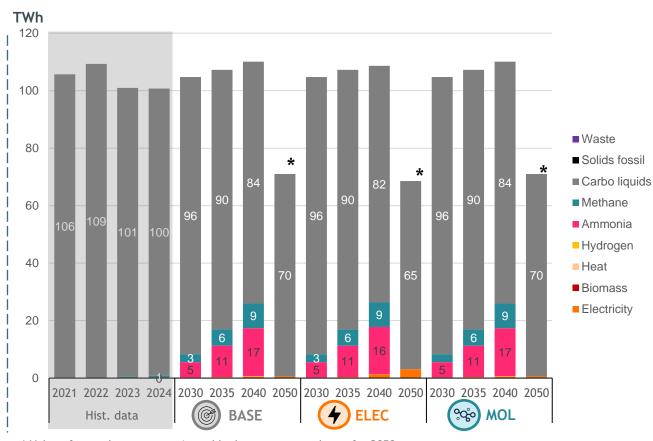
Belgian Hydrogen Council suggested that the ammonia share in Shipping must be higher

The 17% share of ammonia mentioned in the workshop slides was corrected and is now around 32%.

Alfaport Voka mentioned that Walstroom was not included in the energy consumption and should be included

Walstroom is now indeed taken into account for the future energy demand in the International Shipping sector. Note that this remains limited in a macro perspective (<1 TWh)

Scenario & resulting energy demand



- Based on ENTSOs scenario TYNDP2026
- · Electricity potential for int. shipping considered in this scenario

Based on ENTSOs scenario TYNDP2026

International transport energy demand 🛧 🚟

^{*} Values for methane, ammonia and hydrogen are not shown for 2050 carbo liquids unspecified fossil, bio or synthetic. Methanol is included in carbo liquids

Topics

Scenarios and sensitivities

Final energy demand

Overall scenario results

Building demand

Transport demand

Industry demand

Other elements to be considered in the consumption of electricity - Data centers & CCS demand

Energy supply

Electricity supply

Molecule supply

Greenhouse gas emissions

Other and assumptions for EU

General Industry- Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

Reference year and production levels

Stakeholders who suggested it

Main scenarios

Keep pre-crisis levels 2021
 FEBELIEC, Essenscia, Fevia, EDORA, Gouvernement wallon

• Use (post-)crisis levels 2023-2024 CREG, BBL-Canopea

Sensivity/additional scenario

Use post crisis levels 2023-2024 FEBELIEC

Reindustrialisation >2021

Technology shifting

More industrial heat pumps (vs e-boilers)
 Essenscia, FEBELIEC

Slower electrification CREG

Heat pump efficiency should be higher

CREG

Use bottom-up approach by looking at real projects etc

CREG

Other

• Identified potential needs for new capacity in concrete developments (projects, brownfield sites, new zones)

Gouvernement wallon

Subsectors Industry- Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

Food, beverages and tobacco

Electrification is the way to go

Fevia

Biomass potential is limited due to competition and legal contradictions

Fevia

CHP has a use in the first few years

Fevia

More industrial heat pumps

FEBELIEC

Non-metallic minerals

Sector will require a lot of electricity for CCS

Gouverment wallon

Refineries

Hydrogen demand is too low (RED III targets)

Belgian Hydrogen Council, TotalEnergies

Stakeholders who suggested it

Questions constant production levels

BBL-Canopea

Subsectors Industry- Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

Iron & Steel

- Need clarification about the use of H₂ in steel (DRI)
- Overestimation of industry energy use unlikely that primary steel will remain in Belgium (only finishing steps), H₂ too expensive or unvailable -> Consider a sensitivity
- · Electricity demand is ambitious
- Steelmaking sector will be electricity-intensive

Agriculture, forestry & fishing

 Mentions that the choice between heat pumps and e-boilers depends on the availability of a large and cheap heat source

Stakeholders who suggested it

Belgian Hydrogen Council

BBL-Canopea

CREG

Gouvernement wallon

COGEN

Changes since the public consultation

Update of client data

Elia recollected information from the clients with largest electrification projects and took these updates into account.

Share of heat pumps

Increase of share for industrial heat pumps in the long term (versus e-boilers).

Reference Year

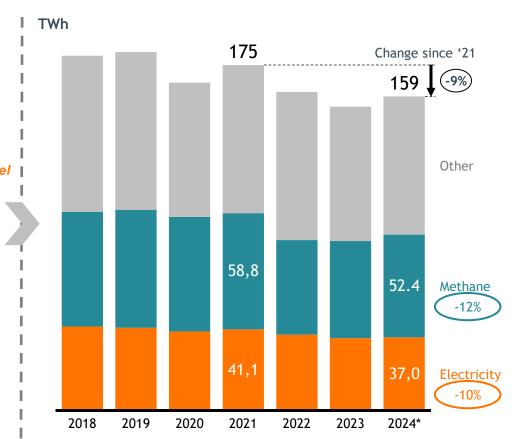
Starting with continuation of 2024 levels, pre-crisis levels are reached as of 2040.

Improved temperature bands

Temperature bands for useful demand in the chemical sector aligned with European source

General industry

The choice of reference year regarding existing industrial output has a significant impact on industrial energy demand


Belgian Industrial production capacity utilisation rate

Energy intensive industry has severely been impacted by the European energy crisis. Many companies have <u>temporarily</u> reduced output, but only a <u>few</u> industrial sites have <u>permanently</u> been closed.

European Russian COVID-19 Invasion energy Ukraine crisis 85 80 80% - 2021 level 76% - 2021 level 75 70 65 60 Chemical Manufacturing industry - total Source: NBB 2015 2016 2018 2019 2020 2021 2022 2023 2024

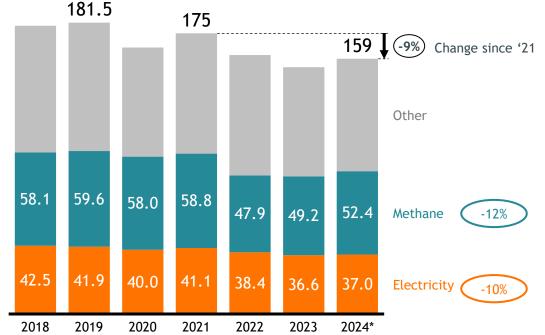
Total Belgian industrial energy demand

After a short-lived COVID-rebound, industrial energy demand reduced by 11% during the European energy crisis

Including refineries, agriculture, excluding feedstock and data centres *2024 based on preliminary SPF data

The choice of reference year significantly impacts industry energy demand

Use pre-crisis levels ~2021


- **Febeliec** (and proposes a crisis level sensitivity)
- **Essenscia:** industrial policy and competitiveness is high on the policy agenda
- Fevia
- **EDORA** (and proposes a reindustrialization sensitivity)
- Gouvernement wallon: ambitious reindustrialization strategy

Use (post-)crisis levels ~2024

- **CREG:** keep consistency with other Elia AdeqFlex study and remain connected to reality
- BBL-CANOPEA proposes to consider lower industrial demand driven by circularity

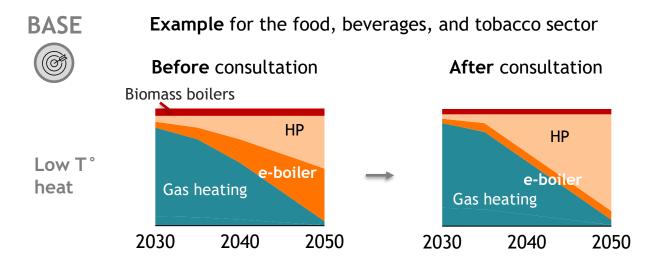
Due to the sensitivity of the subject, Elia and Fluxys propose the following:

- Before 2037/2037: use 2024 as reference year,
- After 2037/2038 use pre-crisis levels (2021)

Taking 2024 instead of 2021 as reference year leads

to 9% lower industrial energy demand

In the long run the impact for electricity and green molecules is even higher as there is smaller fossil fuel base to switch away from



Share of industrial heat pumps

Essenscia and Febeliec suggested to increase the share of heat pump in low temperature heating, to provide more baseload for low-carbon heat production

For the following sectors, i) food, beverages and tobacco, ii) pulp, paper and printing, iii) agriculture, forestry and fishing, iv) non-ferrous metals, v) other small sectors, the repartition between electric boilers and heat pumps has been adapted. After 2035, the share of e-boilers no longer increases, meaning all additional electrification in low temperature processes is assumed to be covered by heat pumps, providing a more baseload supply of heat.

For the chemical & petrochemical sector, the same

is assumed after 2040.

Scenario drivers & resulting energy demand

Scenario reaching high levels of electrification where low to medium temperature heat is electrified via mature technologies such as industrial heat pumps, e-boilers. Due to technological and economical improvements, high temperature process heat is also electrified using newer techniques such as microwaves, plasma heaters, electric crackers etc

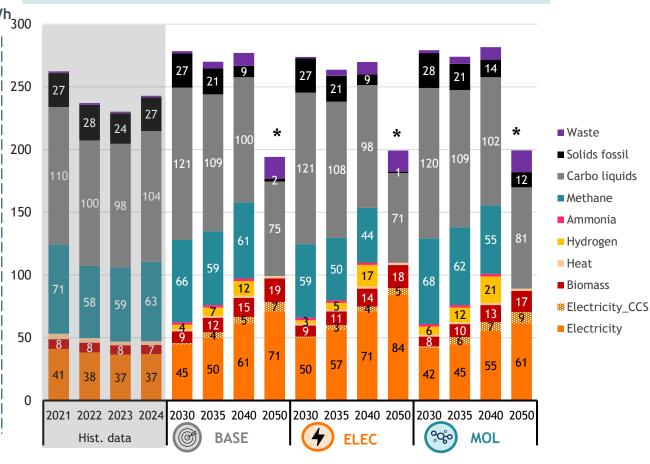
Molecules are applied in hard to electrify domains such as (very) high temperature heat and in Iron & Steel. CCS is applied mainly to compensate process emissions

Scenario with increase in electrification coupled with the usage of molecules. Electrification takes place mainly for low to medium temperature via mature technologies such as industrial heat pumps, e-boilers.

Most high temperature heats remain powered by molecules

CCS is applied mainly to compensate process emissions and remaining combustion emissions

Electrification remains more limited to low to low-medium temperature via mature technologies such as industrial heat pumps, e-boilers.


Most medium to high temperature heats remain powered by molecules (which could in the long term be green via hydrogen, synthetic or bio origin)

CCS is applied on large scale for the compensation of process emissions and combustion emissions

Industry energy demand

including refineries, agriculture & feedstock, excluding data centres

* Values for methane, ammonia and hydrogen are not shown for 2050 carbo liquids & methane unspecified fossil, bio or synthetic

Topics

Scenarios and sensitivities

Final energy demand

Overall scenario results

Building demand

Transport demand

Industry demand

Other elements to be considered in the consumption of electricity - Data centers & CCS demand

Energy supply

Electricity supply

Molecule supply

Greenhouse gas emissions

Other and assumptions for EU

Other elements to be considered in the consumption of electricity- Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

Data centres

negaWatt Present low, moderate, high trajectories

CREG Consider 'Low' trajectory of BCG

Consider a low development scenario **BBL-Canopea**

VNR, negaWatt Clarify link between BCG trajectories and actual projects

EDORA OK with BCG trajectory

Finds the value for Wallonia too high, the region looks to Gouvernement wallon introduce a maximum power access limit, and on the other hand, at integrating criteria into its regulatory tools.

CCS demand

Clarify hypotheses, and give an explicit view on CCS amounts and energy requirements

VNR, CREG, TotalEnergies

Stakeholders who suggested it

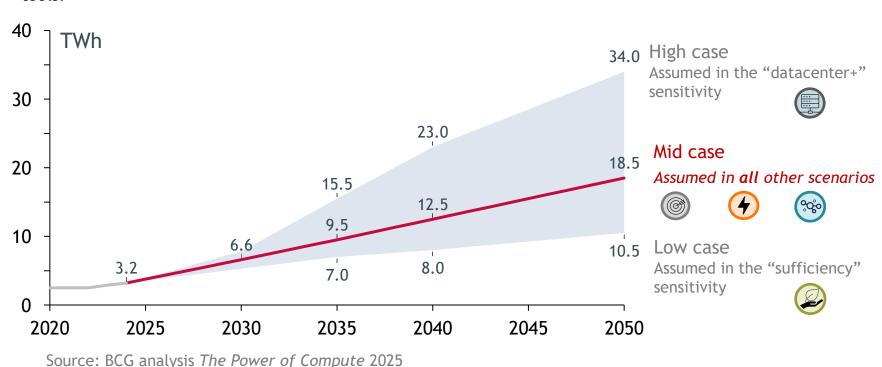
Changes since the public consultation

CCS pathway

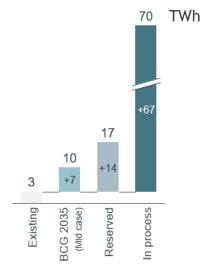
Development of CCS pathway for each scenario and related electricity demand

Datacenter+

The high datacenter trajectory of BCG will be included to analyse the impact of their rapid development


A low trajectory is included in the sufficiency scenario

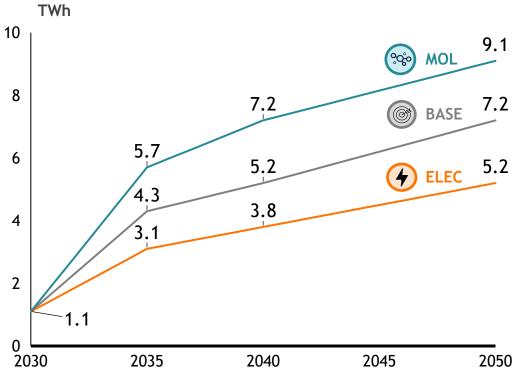
Data Centres


- negaWatt suggests presenting low, moderate and high trajectories.
- CREG and BBL-Canopea propose considering a development scenario ('Low' trajectory of BCG (CREG))
- VNR and negaWatt recommend clarifying the link between BCG trajectories and actual projects
- Gouvernement wallon finds value disproportionate and it looks to introduce a maximum power access limit, and on the other hand, at integrating criteria into its regulatory tools.

For context, the figure below shows the connection requests for new data centres received at Elia. There is already an equivalent of around +14 TWh of connection capacity reserved and requests for a total of +67 TWh. While it is possible that not all capacity reserved or requested will materialise, the mid case of BCG does not seem unreasonably low. Based on stakeholder comments, all trajectories will be considered in the scenario report.

- The **High** case will be used in a **datacenter**+ sensitivity
- The **Low** case will be assumed in the **sufficiency** sensitivity
- Keep the Mid case for BASE, ELEC and MOL

Data centre connection requests TSO grid only



CCS

CREG, VNR, Total, SPF requested a view on CCS amounts and/or electricity requirements

Electricity requirements for CCS

Elia and Fluxys confirm that CCS volumes (MtCO₂ and TWh elec) were not included in the public consultation.

- For 2030-2035, estimates are based on bottom-up data reflecting clients' projects and intentions.
- For 2040-2050, a top-down approach using scenario storylines and external studies helps define CCS potential.
 Each scenario includes a single CCS pathway combining internal input and external insights.

Topics

Scenarios and sensitivities

Final energy demand

Overall scenario results

Building demand

Transport demand

Industry demand

Other elements to be considered in the consumption of electricity - Data centers & CCS demand

Energy supply

Electricity supply

Molecule supply

Greenhouse gas emissions

Other and assumptions for EU

General, solar and onshore wind - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

General

- Power generation should be net-zero in 2035
- Uptake EV will positively impact decentral generation technologies

Solar

- Welcome strong deployment of PV
- Consider self-consumption of PV & kWp/kVA evolution
- High trajectory should be considered as central case
- Potential is too high (especially very high scenario)
- Assumptions in CENTRAL are aligned with Flanders expectations
- Projections aligned with ORES projections
- Vehicle electrification supports decentralized solar PV growth
- Aligned with Walloon target for 2030

Onshore wind

- More onshore in LOCAL
- Current assumptions in CENTRAL scenario are in line with regional objectives
- Onshore sector faces challenges, but the situation could improve
- Aligned with Walloon target for 2030

Stakeholders who suggested it

EDORA

EV Belgium

BBL - Canopea

ODE Vlaanderen

EDORA

TotalEnergies, FEBEG, ENGIE

Vlaamse Regering

ORES

EDORA

Gouvernment wallon

EDORA

ORES, Vlaamse Regering

BBL-Canopea

Gouvernment wallon

Supply - Electricity

Domestic & non-domestic offshore wind - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

Domestic offshore wind

Follow official timings: 8 GW by 2040

Questions if more than 6 GW can be reached

- 8 GW by 2040 is not realistic
- Repowering first zone will not increase capacity in same space (BOP: but new marine spatial plan foresees more space)

Stakeholders who suggested it

Belgian Offshore Platform, ENGIE, FEBEG

BBL - Canopea

CREG

CREG, Belgian Offshore Platform

Non-domestic offshore wind

2 GW by 2038 is very ambitious

 Timing too ambitious, only include non-domestic offshore wind in 2040-45

 Decouple non-domestic offshore wind and nuclear sensitivities

Ok to include it but priority for domestic

Support the ambition but request more clarity

CREG

FEBELIEC

negaWatt

Belgian Offshore Platform

BBL-Canopea, FEBEG, ENGIE

Nuclear & Biomass, waste and run-of-river - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

Nuclear

Timing of new nuclear might be too ambitious

- Questions if the extension of existing nuclear
- (especially Tihange 1) is realistic
- Target of the federal gov. is 4 GW
- Include a no-nuclear scenario
- SMR may be available before 2040 (Large Scale-scenario)
- Will work with federal govt. within the limit of their competences. Large-scale ideally brownfield, SMR could be new locations.

Stakeholders who suggested it

BBL - Canopea, negaWatt, CREG

BBL - Canopea, ENGIE, TotalEnergies, CREG

CREG

BBL - Canopea, EDORA

Vlaamse Regering

Gouvernement wallon

Biomass, waste and run-of-river

 Biomass and waste should decline over the years for power production

BBL - Canopea, ODE Vlaanderen, COGEN

CHP - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

CHP capacity

- Short term: capacity will decrease
 Long term: CHP will remain important
- No decrease in CHP in the near future but flexibility (e-boilers or heat pumps)

Stakeholders who suggested it

COGEN Vlaanderen

TotalEnergies

CCGT's, OCGT's, turbojets and new gas-fired thermal capacity & CHP - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

CCGT's, OCGT's, turbojets and new gas fired thermal capacity

Too much gas capacity by 2035

Existing capacity should also become hydrogen-fired

Clarify why hydrogen and not CCGT's

Please clarify the source of hydrogen, required infrastructure and expected cost ranges

• The CRM will remain important

CHP capacity

Short term: capacity will decrease
 Long term: CHP will remain important

 No decrease in CHP in the near future but flexibility (e-boilers or heat pumps)

Stakeholders who suggested it

BBL - Canopea

TotalEnergies

CREG

FEBELIEC

ENGIE, FEBEG

COGEN Vlaanderen

TotalEnergies

Batteries - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

- Proposed trajectories are conservative
- Alignment to 4.7 GW by 2035 from adeqflex CT
- 10-15 GW by 2035-40 & 30-45 by 2050
- 50% increase for pump storage
- Large-scale batteries are crucial for the energy transition
- Battery capacity should be optimized, not defined ex-ante
- FLEX+ assumptions should be used in the LOCAL scenario
- Welcomes batterie, avoid doing it at the expense of other users There is potential for more pumped storage

Small-scale storage

- Proposed trajectories are conservative
- Increase in connection request for new battery projects
- Residential batteries will increase in size
- The possibility of EV's to perform V2G should be considered
- Underestimation of the behind-the-meter batteries
- The LOW scenario seems most likely
- The home battery subsidy is not included in the Government Policy Declaration

Stakeholders who suggested it

FEBELIEC

CREG

BSTOR

TotalEnergies

ENGIE

EDORA

EDORA

Gouvernement wallon

FEBELIEC, EDORA

ORES

TotalEnergies

TotalEnergies

Bnewable

ENGIE, FEBEG

Gouvernement wallon

Main changes since the public consultation

Existing nuclear

The extension of **Tihange 1 was removed from** the **LOCAL and CENTRAL** sensitivity following the new Federal Energy and Climate plan, D1/D2 were added in the **LARGE SCALE** sensitivity

Ambition revised downwards

New nuclear

The trajectory for the large-scale scenario was revised upwards.

Delay of the first 2 GW set of non-domestic offshore in the LOCAL and CENTRAL scenario

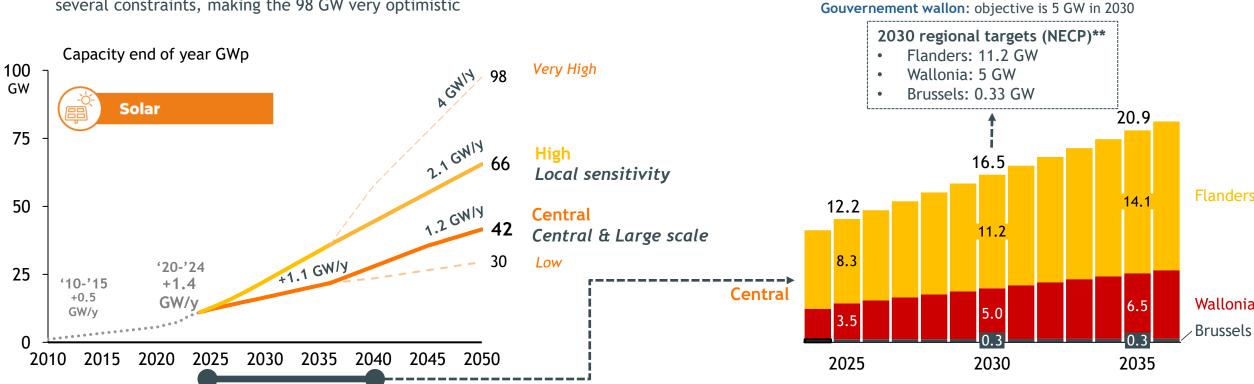
Batteries

The trajectories were revised upwards further split in more detailed categories, adding a medium size category and a distinction between behind and front-of-meter batteries.

Gas, CCGT and CHP

CHP volume no longer grows in the period 2025-2030. A decrease is considered as of 2030.

A simplified EVA will be performed for capacity added for adequacy reasons


4

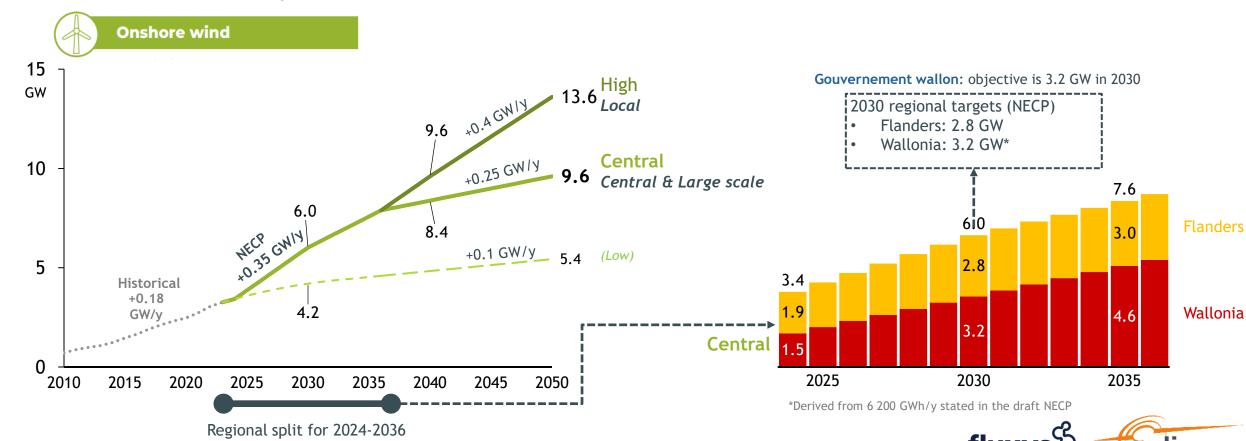
No changes are proposed for Solar PV trajectories since public consultation

Some stakeholders proposed higher values:

- BBL-Canopea "welcomes the scenarios with a strong deployment of PV"
- ODE consider the VEKP ambitions as to be conserved in a 'low' scenario
- **EDORA**: the 'high' trajectory should be considered as the 'central' case Others proposed lower values:
- Engie proposes the 'central' scenario or slightly lower, max levels of 30-40 GW for 2050 due to technical limitations
- FEBEG: only sees the 'low' and 'central' trajectories as feasible
- **Total Energies:** estimates the rooftop PV potential to have its limits due to several constraints, making the 98 GW very optimistic

It is proposed to **keep the trajectories** as they **fall in line with within the ranges of the comments** received. 2030 targets are confirmed by latest NECP.

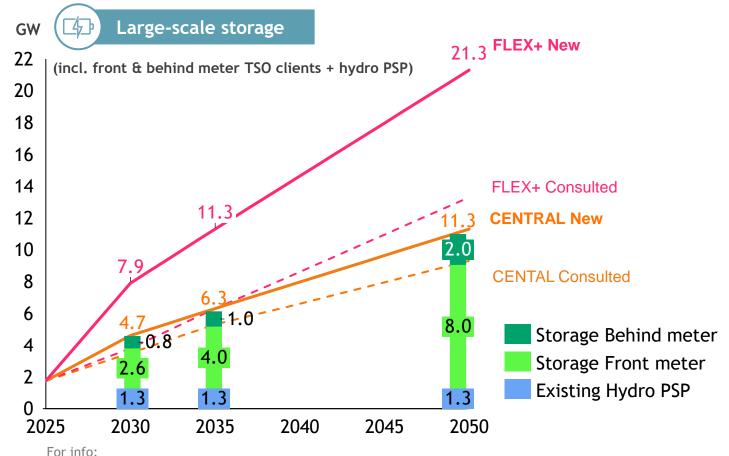
Regional split for 2024-2036


**For WL & BXL derived from the GWh target, for FL derived from the 10MvA target and assuming 1.12 MWp/MvA

^{*} Note that the trajectory also includes non-rooftop capacity

Onshore wind: no changes are proposed since public consultation

- **BBL-Canopea** highlight the benefits of a strong roll-out of onshore wind, but challenged due public acceptance & spatial planning
- **EDORA** at least one scenario should reach 20-25 GW by 2050, technical potential estimated at 18 GW by EnergyVille
- VEKA and ORES: current assumptions in the CENTRAL scenario are in line with regional objectives
- Gouvernement wallon: objective is 3.2 GW in 2030

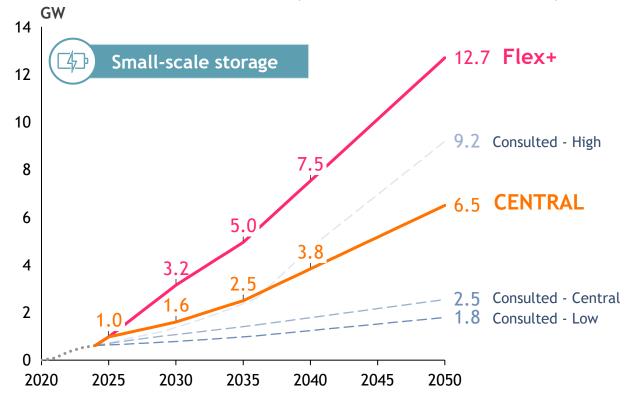

It is proposed to keep the trajectories as they fall in line with within the ranges of the comments received. 2030 targets are confirmed by latest NECP.

4

Large-scale storage

- Febeliec finds the proposed trajectories conservative on batteries.
- CREG wants alignment with a 4.7 GW by 2035 max potential (before EVA) from AdeqFlex CT by 2035 (i.e. based on % of EDS/EOS projects)
- BSTOR proposes 10-15 GW by 2035-40 and 30-40 GW by 2050, highlighting needs for adequacy, flexibility, and hedging/opportunity value
- Bnewable considers underestimation of the behind-the-meter batteries.

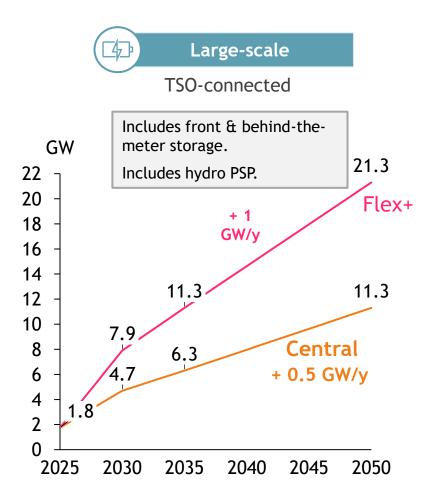
- Increase the CENTRAL to account for behind-themeter batteries of TSO-clients (today limited, but large potential). Proposal +2 GW by 2050 of BTM.
- Increase the FLEX+ scenario (= CENTRAL batt. x2) to assess impact of real surge of batteries.
- Additional hydro pumped storage plant should be considered included in this trajectory.

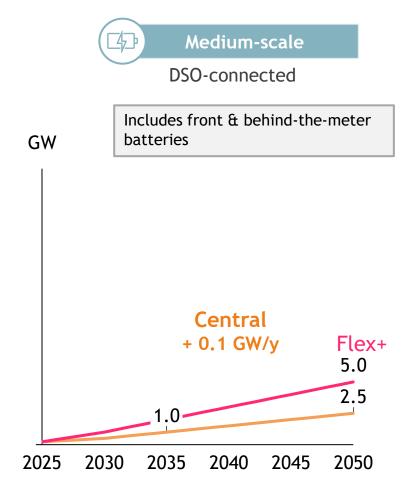


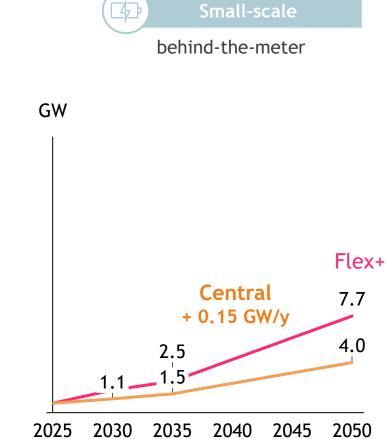
Small-scale batteries storage - DSO connected

- Some stakeholders find the proposed trajectories conservative, expecting higher capacities
 - ORES mention a strong increase in connection request for new battery projects
 - Bnewable says behind-the-meter (BTM) batteries are underestimated, suggesting could be up to 2 GW at DSO level only.
 - Febeliec views projections as too conservative with falling battery costs, incl. for residential.
- ENGIE and FEBEG support the LOW scenario, expecting V2G to prevail

DSO-connected batteries (front & behind the meter)

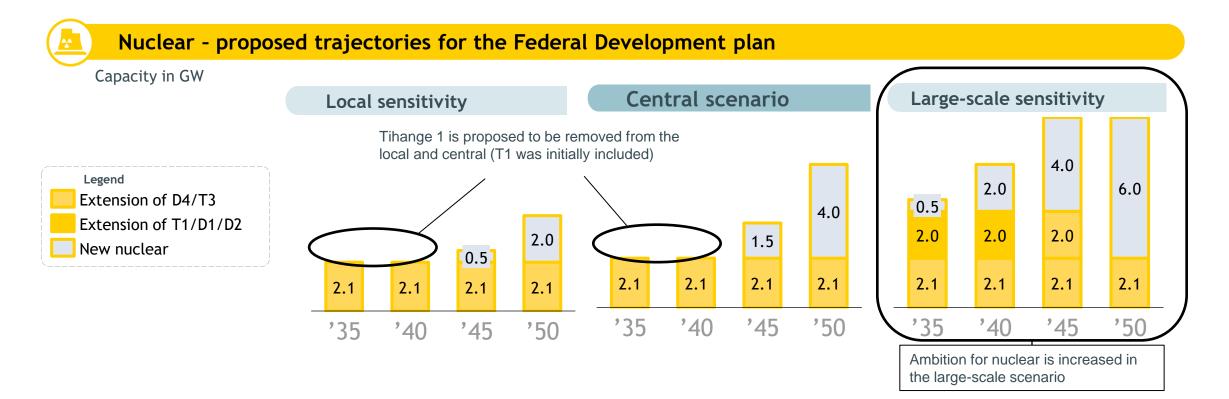



Proposal: split residential and medium-level for more clarity


- Residential: 750 MW existing + linear increase of AdeqFlex (no real business case today without incentive)
- Medium size DSO-connected: 220 MW existing
 - + high interest for DSO-connection
 - + behind-the-meter
 - ~ 2 GW by 2050

The FLEX+ trajectory assumes even higher levels of small-scale batteries

New proposal for all battery storages



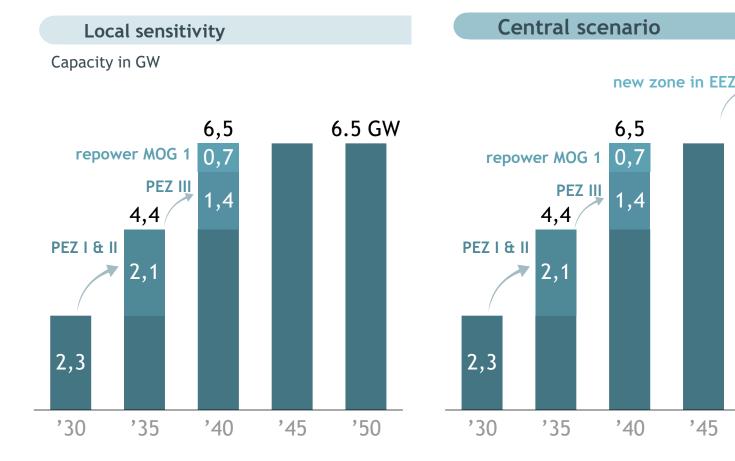
- 5

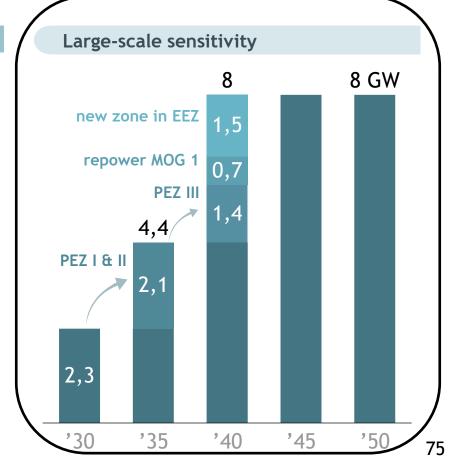
Nuclear

- Some stakeholders find the proposed trajectories too ambitious, expecting lower capacities
 - BBL Canopea, negaWatt, CREG Mention that the timing of new nuclear might be too ambitious
 - BBL Canopea, Engie, CREG, TotalEnergies Question if the extension of existing nuclear (especially T1) is realistic
 - BBL Canopea, Edora Urge to simulate a no-nuclear scenario
- CREG mentions that the target of the federal government is 4 GW

- Remove T1 from the LOCAL and central scenario as it was also not included in the new NECP
- Keep minimum 4 GW nuclear in all scenarios by 2050 as it is the government's ambition
- The trajectory for the large-scale scenario was made more ambitious

Offshore wind domestic - trajectories proposed for the Federal Development plan


- Some stakeholders support the ambition of 8 GW domestic offshore by 2040 while others question its realism
 - BOP, Engie, FEBEG Support following the ambition of 8 GW by 2040
 - BBL Canopea Questions if more than 6 GW can be reached
 - **CREG** mentions that reaching 8 GW by 2040 is highly unlikely


The Large-scale sensitivity keeps the original trajectory proposed in the consultation. CENTRAL and LOCAL were revised downwards.

8 GW

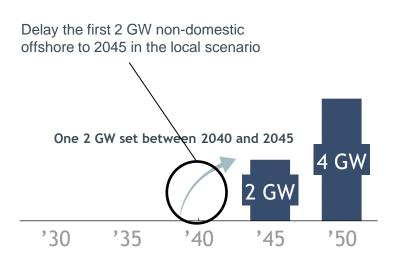
'50

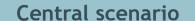
'45

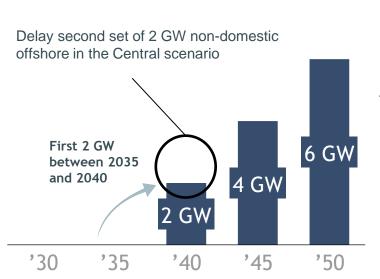
4

Non-domestic offshore wind

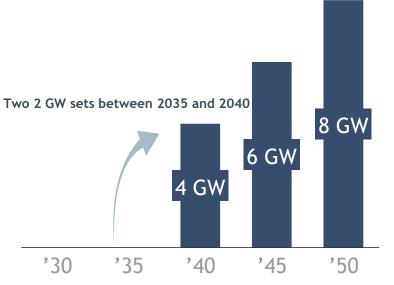
- Some stakeholders think the timing of the first sets of non-domestic wind are too ambitious
 - CREG, Febeliec Indicate the timing of non-domestic offshore wind is too ambitious
- negaWatt Requests decoupling the offshore wind and nuclear sensitivities

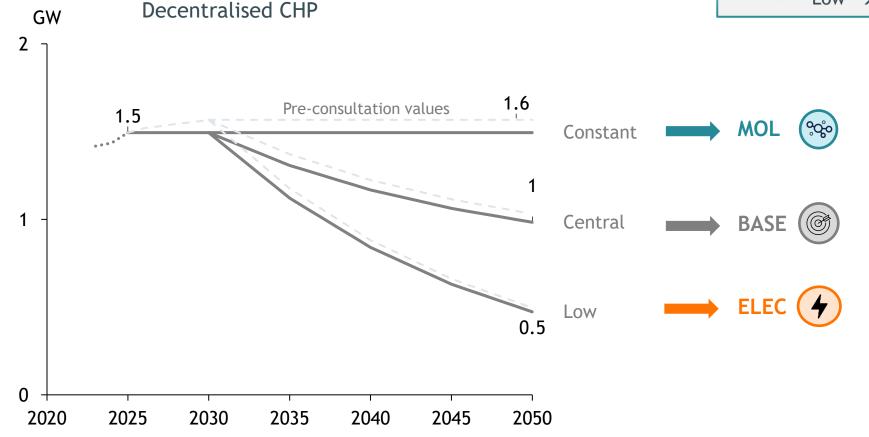

- Delay the first 2 GW of non-domestic wind in both the Local and large-scale scenario to be installed at the soonest in 2040
- Explicit guidance is needed from federal authorities on Belgium's ambitions




Offshore wind - non-domestic

Capacity in GW


Local sensitivity


Large-scale sensitivity

4

CHP capacity

- **COGEN Vlaanderen** expects a decrease in installed capacity but foresees an important volume will remain in the system in the long term
- TotalEnergies expects no decrease in the near future but expects the assets will be used in a flexible way (together with heat pumps or E-boilers)
- Remove the growth of capacity in the short term (up to 2030), assuming no net new capacity.
- Associate the trajectories to the supply scenario, assuming more electrified scenario would see more baseload electrification technologies
 - 'Constant' → MOL scenario
 - 'Central' → BASE scenario
 - 'Low' → ELEC scenario

Electricity consumption flexibility - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

General

More types of flexibility and thermal storage should be included

Need to consider (future) evolution of local tariffs, dynamic contracts,...

End-user flexibility (V2G and residential batteries)

- Importance of V2X
- Much more V2X
- Plan should be an enabler and study the impact of stronger adoption

Industrial flexibility

- Questions why no additional industrial flexibility can be captured from existing uses
- Questions keeping industrial flexibility fixed at 1.7 GW until 2050, expecting it to increase
- Requests clarification on reduction of flexibility for new uses vs Blueprint study

Stakeholders who suggested it

negaWatt

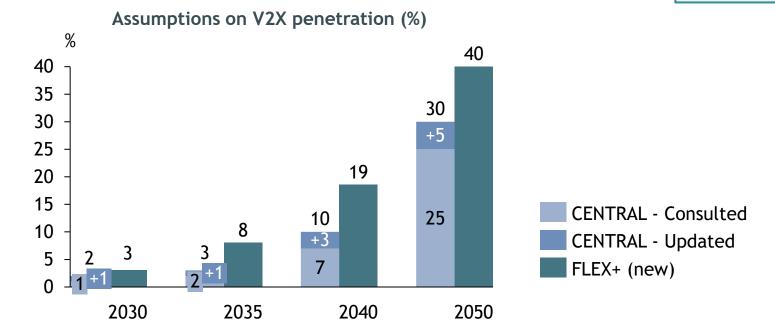
Vlaamse Regering

FEBELIEC, EDORA, ENGIE, EV Belgium, FEBEG

FEBELIEC

EDORA, EV Belgium

EDORA


CREG

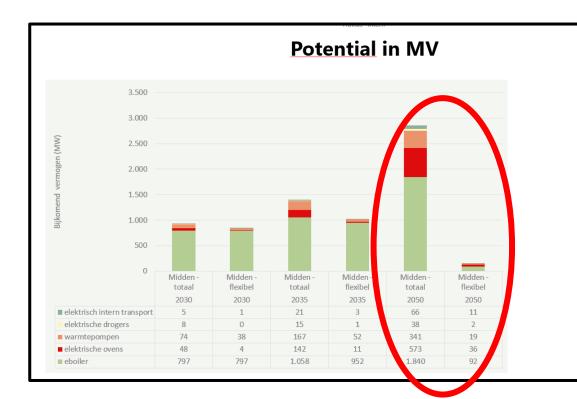
CREG

V2X

- FEBELIEC, EDORA, ENGIE, EV Belgium, FEBEG stress the importance of V2G and EV flexibility in general
- FEBELIEC argues that the V2G assumptions are too conservative

- Even though significant barriers still exist (tariffication scheme, public awareness/acceptance, tech compatibility,..), the V2X share is increased in the central scenario.
- An ambitious trajectory is set for the FLEX+ scenario.

- V2X share is increased for each target year.
- 2035 share of V2X in the CENTRAL is increased to 3%, aligning with RTE.
- 2050 share of V2X in the FLEX+ is increased to 40%, aligning with technical potential of EnergyVille.


DSR industry

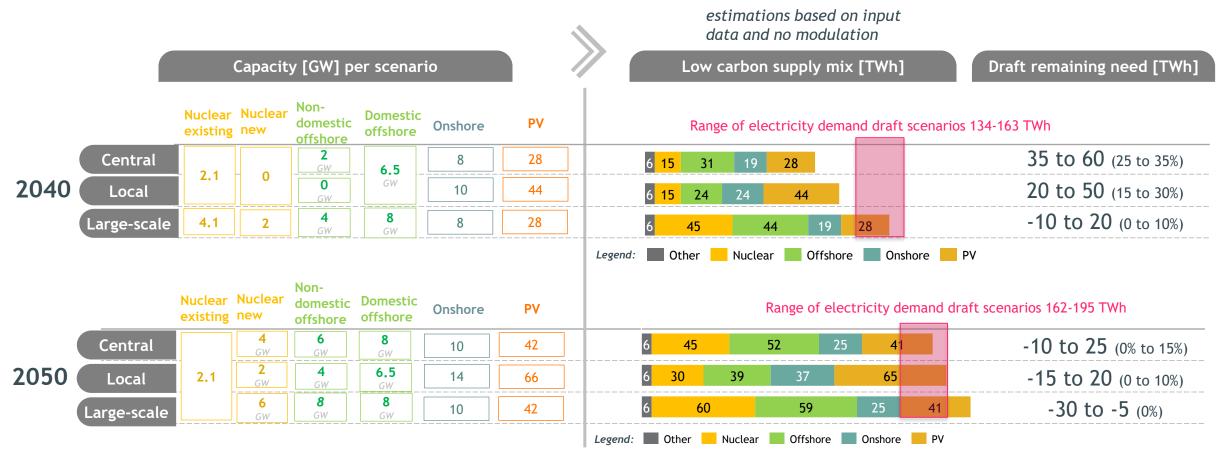
Industrial flexibility

- DSR from existing usages: EDORA requests clarification for assuming that no additional industrial flexibility can be captured from existing uses and CREG questions keeping industrial flexibility fixed at 1.7 GW until 2050, expecting it to increase thanks to new market incentives.
- <u>DSR from new usages</u>, **CREG** requests clarification on why flexible capacity for new uses is reduced by one-third every five years from 2035, unlike in the BluePrint study.

 DSR from existing usages: align with the value chosen by the Minister in the framework of the CRM, i.e. 1200 MW.

energie GRIP

As highlighted in the EnergieGRIP study, additional e-boilers or heat pumps are assumed to serve as backup for the existing heating systems.


However, in line with net-zero targets, the primary heating device is expected to be phased out. As a result, the inherent flexibility of switching between electricity and other fuels will also disappear. This was also a comment made by industry stakeholders during the workshops.

This aspect was not considered in the Blueprint study, as it only emerged during the EnergieGRIP analysis conducted for Flanders. A similar explanation is provided in the most recent AdeqFlex report, although its time horizon does not extend beyond 2036.

Indicative supply-demand balance for electricity

Values for supply in TWh and demand ranges are draft and provided as an indication only. Electricity demand excludes electrolysers, demand-side response...

Batteries & PSP in 2050:

TSO-connected: 11.3 GW | 21.3 GW in FLEX+ DSO-connected: 2 GW | 4 GW in FLEX+ Residential: 2.5 GW | 8 GW in FLEX+

Topics

Scenarios and sensitivities

Final energy demand

Overall scenario results

Building demand

Transport demand

Industry demand

Other elements to be considered in the consumption of electricity - Data centers & CCS demand

Energy supply

Electricity supply

(%) Molecule supply

Greenhouse gas emissions

Other and assumptions for EU

Biomethane, hydrogen and supply-demand balance - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholder's comment.

Biomethane

Potential is too high

Low values compared to the source is questioned

Hydrogen

Hydrogen demand "hidden" under methane balance

Role of hydrogen to stabilize the grid

Expectations for green hydrogen are too high

Lower electrolyser capacities

Realign ammonia cracking capacities with market

 Consider capacity factors and efficiency for electrolysers and ammonia cracking

Consider import-export H2 volumes

Stakeholders who suggested it

BBL- Canopea

COGEN, ENGIE, FEBEG

Engie

Belgian Hydrogen Council

BBL - Canopea

ENGIE

CREG

CREG

CREG

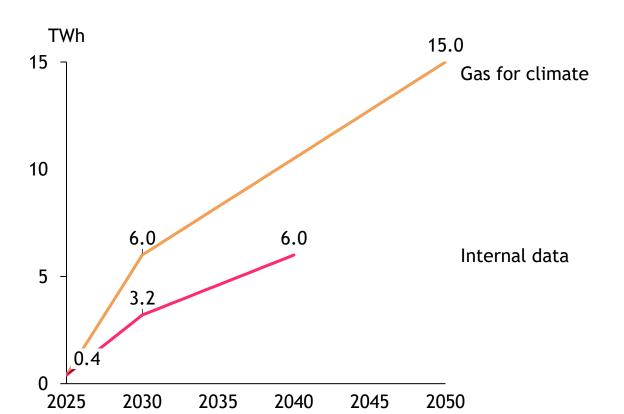
Supply-demand balance

Based on RED III, hydrogen demand is low

Specify source of carbon for e-fuels and e-gases

TotalEnergies, CREG

FEBELIEC



Biomethane: no changes are proposed

Some stakeholders questioned the lower values compared to the source (COGEN, Engie & FEBEG), BBL-Canopea suggested the trajectory was overestimated

It is proposed to **keep the trajectories** as they are indeed lower than Gas for Climate* study, but **aligned with internal data**

Internal data

Current situation: 0.4 TWh/y

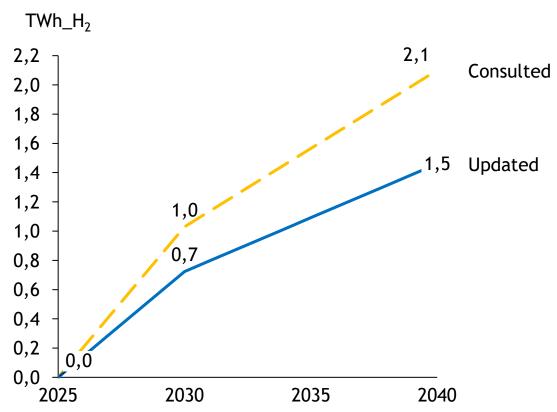
Potential (DSO):

• 2026: + 0.5 TWh/y

2028: + 0.5 TWh/y

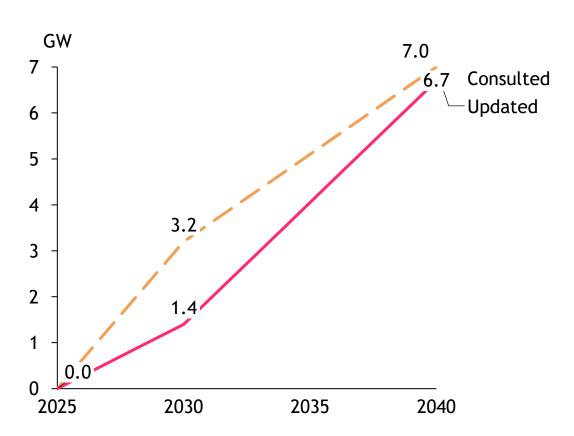
Potential (TSO):

• 2027/2028 : + 1.8 TWh/y



Efficiencies and capacity factors

CREG raised the point that efficiencies and capacity factors were not included in computations



Indeed, a capacity factor of 100% is always used for calculations to compute the maximum potential of supply for molecules. This factor will be determined by further internal simulations. However, efficiencies for electrolysers were not included in the public consultation. Hydrogen volumes were therefore adapted (efficiency of 70%1).

Ammonia: realign cracking capacities with the market

CREG proposed lower values, and in line with current projects

The values will indeed be realigned (downwards) with internal data

Import-Export H₂

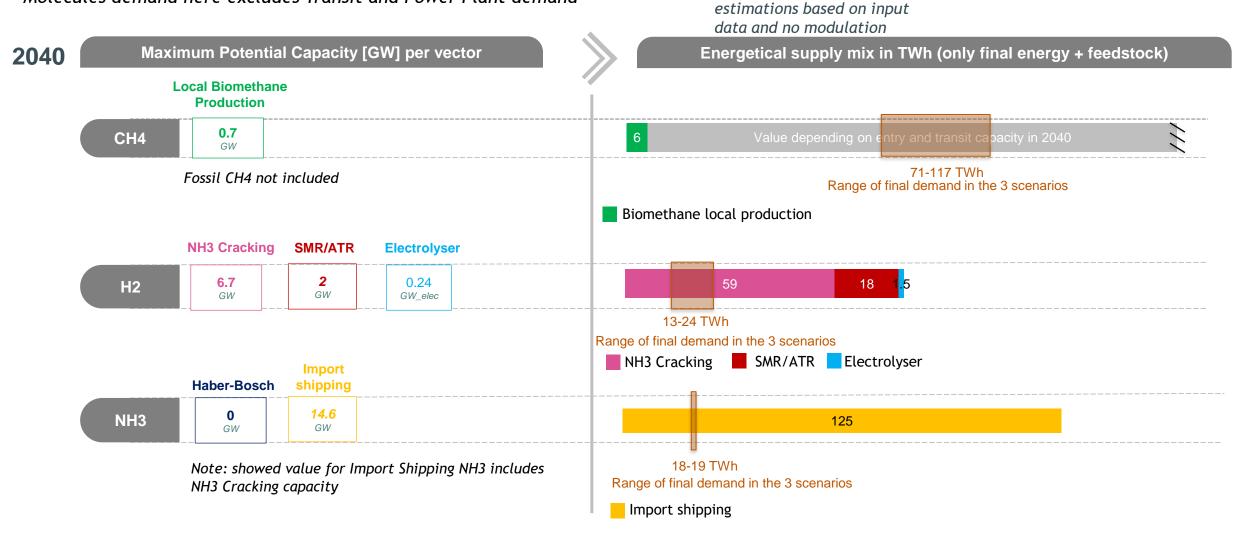
CREG asked to consider import-export H₂ volumes

The dimensioning of the hydrogen network will be determined by

- H₂ transport for final demand
- H₂ transport for feedstock
- Already analysed
- The production potential of e-fuels (ammonia, methanol, synthetic methane, ...)/electricity \mathbf{l}
- Transit to neighbouring countries.

Will be taken into account for network simulations

Overview of draft proposed molecules supply scenarios


Values for supply in TWh and demand ranges are draft and only given as indication Molecules demand here excludes Transit and Power Plant demand

Overview of draft proposed molecules supply scenarios

Values for supply in TWh and demand ranges are draft and only given as indication Molecules demand here excludes Transit and Power Plant demand

Topics

Scenarios and sensitivities

Final energy demand

Overall scenario results

Building demand

Transport demand

Industry demand

Other elements to be considered in the consumption of electricity - Data centers & CCS demand

Energy supply

Electricity supply

Molecule supply

Greenhouse gas emissions

Other and assumptions for EU

Greenhouse gas emissions - Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholders comment.

Align scenarios on climate objectives already defined

Present assumptions regarding decarbonization measures

Additional measures have to be implemented to reduced the gap for 2030

Consider the latest NECPs to evaluate the realistic reductions towards 2030

Shouldn't set ETS targets at Belgian level

Propose to set ETS targets at BE level based on a merit order analysis for emission reductions at EU level. If not possible, should take the 2021 by Climact study as basis

Not in favor of setting 2035 and 2040 targets for ESR

Suggestion of ETS and ESR targets for 2040 and interpolation for 2035

Corrections regarding the already validated climate ambition for 2050

Stakeholders who suggested it

CREG

Essenscia, CREG

BBL-Canopea

CREG

Essenscia, FEBELIEC

CREG

Essenscia

CREG

Essenscia

Changes since the public consultation

Additional decarbonization measures

Quantification of measures reducing the gap between GHG emissions and the targets

CCS pathway

Development of CCS pathway for each scenario and related electricity demand

Renewable energy in transport

Integration of more renewable energy for transport following RED II / FL ambition

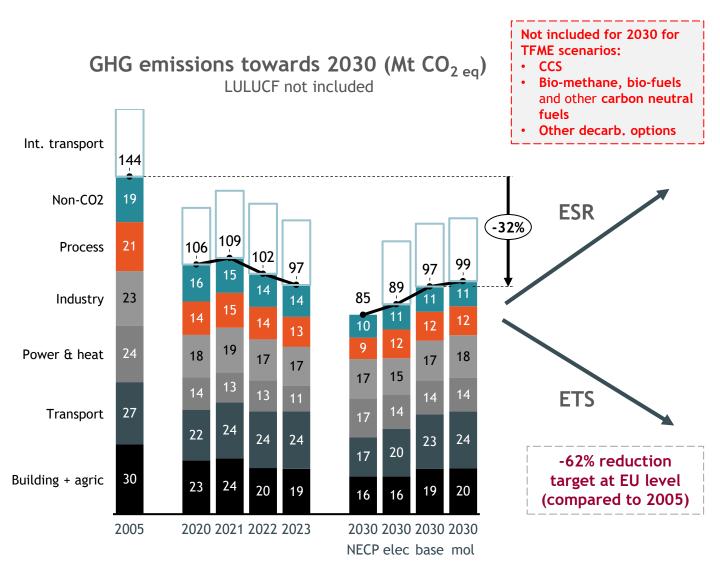
GHG quantification methodology

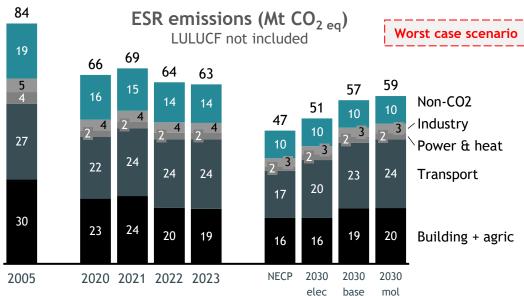
GHG quantification methodology is refined and improved

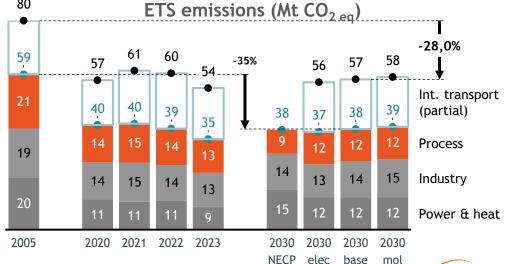
Validated BE NECP

Final BE NECP has been validated by the government and the 3 regions on 06/10/25, ready to be sent to the EC

Emission targets at European and Belgian levels

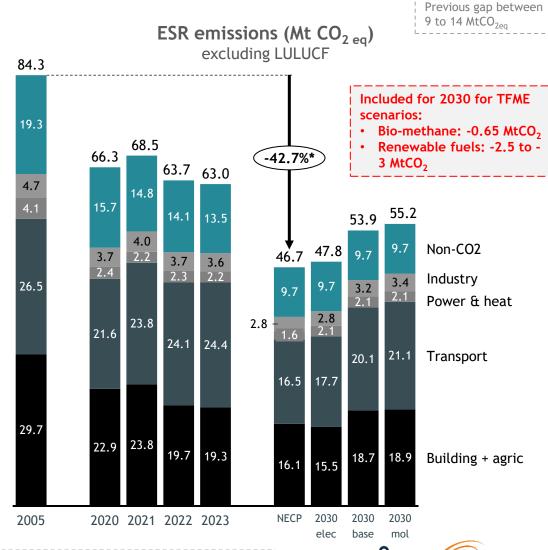

Climate policy instrument	Level	2030	2040	2050
Effort sharing regulation (Non-ETS)	Belgian	-42.7% Compared to 2005	Not yet specified*	Not yet specified
Effort sharing regulation (Non-ETS)	Flanders	-40% Compared to 2005	Not yet specified	Net zero @ EU level
	Wallonia	-47% Compared to 2005	Not yet specified Interpol = -73.5%	Net zero @ WL level
	Brussels	-47% Compared to 2005	- 69 % Compared to 2005	Net zero @ BXL level
EU - ETS	European	-62% Compared to 2005	Not yet specified	Global (ETS I/II + ESR) Net zero target @ EU level
EU - ETS 2	European	-42% Compared to 2005	Not yet specified	
Total GHG	European	- 55 % Compared to 1990	- <mark>90%</mark> Compared to 1990	Net zero @ EU level


ETS: No ETS targets to be set at Belgian level.


ESR: In the absence of, currently, further direction from the competent authorities, ESR targets for 2035 and 2040 will not be set.

Reaching 2030 GHG targets will require additional decarbonisation actions

Total ETS


Emission gap between the TFME scenarios and ESR ambition has significantly been reduced

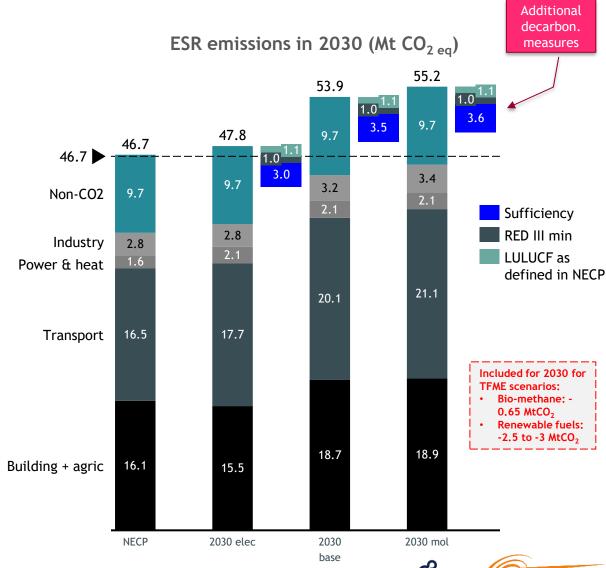
Main changes in comparison with PC scenarios for ESR:

- The NECP was finalized and published on the 06.10.25 with a lower 2030 ambition (43.3 $MtCO_{2eq} \rightarrow 46.7 MtCO_{2eq}$)
- Demand scenarios are adapted based on PC feedbacks (industry reference, assumptions for buildings and transport, etc)
- Improvements are made regarding the splitting methodology between ETS/ESR emissions for industry and power generation
- Non-CO₂ estimation is directly taken from the NECP
- Supply: emission reductions from renewable supply are integrated:
 - -0.65 MtCO₂ (in buildings) by using the full biomethane potential identified by 2030
 - -2.5 to -3 MtCO₂ by considering the REDII/Flemish target/ambition regarding the blending of biofuels for transport

Potential additional measures to reduce the ESR emissions

- Integrate LULUCF reduction of -1.1 MtCO_{2eq}
- Integrate additional reductions due to RED III transposition at BE level (up to -1 to -2 MtCO₂) for the transport sector (to be confirmed)
- Sufficiency sensitivity (compared to BASE scenario)
 - -2.1 MtCO₂ for buildings
 - -1.5 MtCO₂ for transport
- Accelerate biomethane development in Belgium
- Imports additional volumes of biomethane and/or bioliquids

Reaching 2030 ESR target requires additional decarbonisation measures

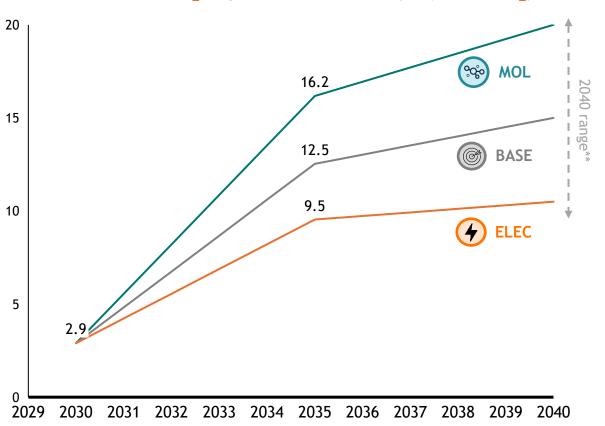

Potential of additional decarbonisation measures

- Integrate LULUCF reduction of -1.1 MtCO_{2eq}
- Integrate additional reductions due to RED III transposition at BE level (up to -1 to -2 MtCO₂) for the transport sector (to be confirmed)
- Sufficiency sensitivity (compared to BASE scenario)
 - -2.1 MtCO₂ for buildings
 - -1.5 MtCO₂ for transport

Compliance with 2030 ESR target (from NECP)

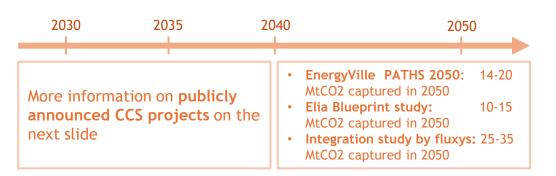
- **ELEC**: limited number of additional decarbonisation measures needed
- BASE & MOL: required to select several decarbonisation measures to narrow the gap with 2030 ESR target and more imports/production from renewable fuels to reach this target
 - Around 15-20 TWh of additional renewable fuels (i.e. bio-methane, bio-liquids, ...) would be needed to reach 2030 ESR target (on top of the already considered volumes)

Disclaimer: It is not Elia and Fluxys' responsibility to select/prioritise the additional measures to be implemented or to estimate their related costs/financing.



CCS pathways

CREG, VNR, Total, SPF requested already a view on CCS amounts and/or electricity requirements


Estimated CO₂ captured in industry* (in Mt CO₂)

*Simulation results (from Integration @fluxys) could show more CO2 captured by 2040 for SMRs and power plants

**Wider range for 2040 due to uncertainties

Elia and Fluxys confirm that CCS volumes (MtCO₂ and TWh elec) were not included in the public consultation. For 2030-2035, estimates are based on bottom-up data reflecting clients' projects and intentions. For 2040-2050, a top-down approach using scenario storylines and external studies helps define CCS potential. Each scenario includes a single CCS pathway combining internal input and external insights.

Several industrial actors have already publicly announced their CCS projects

De vraag voor CO₂-infrastructuur schaalt snel op en vereist infrastructuur tegen 2029

Sources: VOKA 06/2025: Vlaamse industrie: 5 Ankerpunten voor een concurrentiële transformatie & *Innovation fund project sheet for ARCaDe

Main industrial CCS projects starting operations around 2029-2035:

Kairos@C : BASF & Air-Liquide

GO4ZERO: Holcim

• H2BE: Engie & Equinor

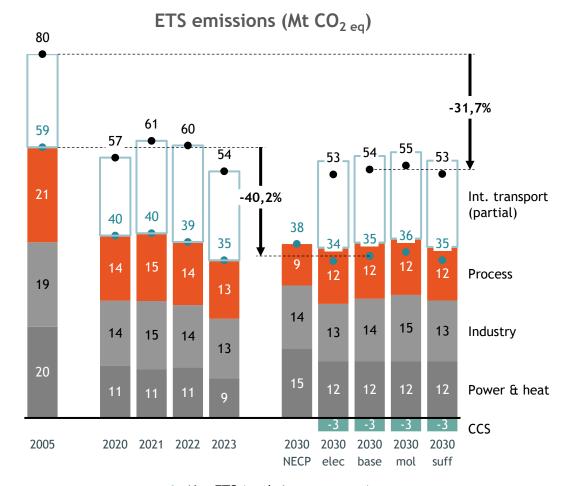
ANTHEMIS: Heidelberg materials

Zesta: ArcelorMittal

ARCaDe*: TotalEnergies refinery (0.78 MtCO2/y)

2030 ETS emissions have also been reduced compared to PC data

Previous reduction of -31% -> now -40%


Main changes in comparison with PC scenarios for ETS:

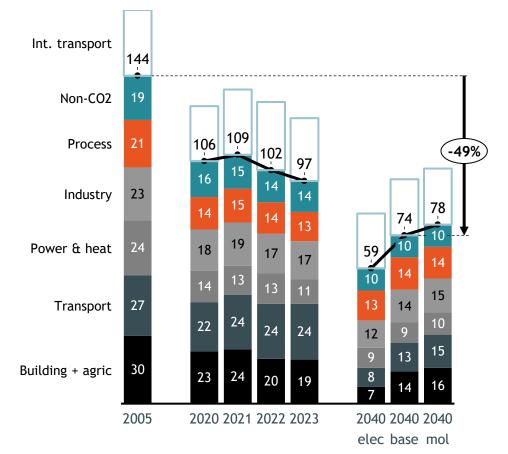
- Demand scenarios are adapted based on PC feedbacks: industry reference and assumptions for specific sectors
- Improvements are made regarding the splitting methodology between ETS/ESR emissions for industry and power generation
- CCS pathways are integrated. By 2030: 2.93 MtCO₂ is supposed to be captured in all scenarios
- Process emissions are adapted due to closure or plant modifications (i.e. Total naphtha cracker, Yara)

Potential additional measures to reduce the ETS emissions

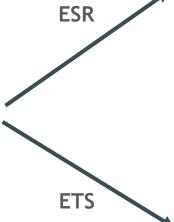
- Integrate additional reductions due to RED III transposition at BE level for the international transport sector.
- Sufficiency sensitivity (compared to BASE scenario): -1 MtCO₂ for industry and process emissions.

No target for ETS at Belgian level to be considered

- Net ETS (excl. int. transport)
- Total Net ETS



Estimated 2040 GHG emissions


GHG emissions towards 2040 (Mt CO_{2 eq})

LULUCF not included

Not included for 2030:

- CCS
- Bio-methane, bio-fuels and other carbon neutral fuels
- Other decarb, options

2005

2020 2021 2022 2023

Total ETS

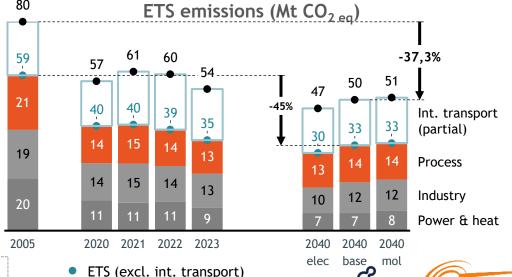
-XX% reduction target.
At least lower than
-62% at EU level
(compared to 2005)

Distribution between ETS and ESR GHG emissions (for sector in both scope) is done based on historical split

Under the current linear reduction factor (LRF) for ETS I, the cap on emissions is set to decline annually by 4.3% from 2024 to 2027 and by 4.4% from 2028 onwards. As a result, no new allowances will be issued after 2039. By 2040, only previously issued but unused allowances will remain in circulation.

ESR emissions (Mt CO_{2 eq}) LULUCF not included Worst case scenario Worst case scenario 44 Non-CO2 Industry Power & heat Transport 23 24 20 19 8 8 7 14 16 Building + agric

-90% 2040


fluxys

indicative elec

2040

base

2040

Zoom on estimated 2040 emissions for ESR scope

Main changes in comparison with PC scenarios for ESR:

- Demand scenarios are adapted based on PC feedbacks (industry reference, assumptions for buildings and transport, etc)
- Improvements are made regarding the splitting methodology between ETS/ESR emissions for industry and power generation
- Supply: emission reductions from renewable supply are integrated:
 - -1.2 MtCO₂ (in buildings) by using the full biomethane potential identified by 2030
 - -2.5 to -3 MtCO₂ by considering the REDII/Flemish target/ambition regarding the blending of biofuels for transport (same as for 2030)

Potential additional measures to reduce the ESR emissions

- Integrate LULUCF reduction of -1.8 MtCO_{2eq}
- Integrate additional reductions due to RED III transposition at BE level for the transport sector (to be confirmed)
- Sufficiency sensitivity (compared to BASE scenario)
 - -2.4 MtCO_{2eq} for buildings
 - -1.8 MtCO_{2eq} for transport
 - -0.2 MtCO_{2eq} for small industries
- · Accelerate biomethane development in Belgium
- Imports additional volumes of biomethane and/or bioliquids

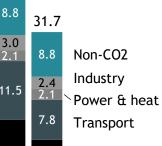
Currently no target for ESR emissions in 2040 to be set

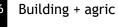
Currently, Belgium does not have an ESR target set for 2040. The -90% shown on the chart is purely indicative.

ESR emissions (Mt CO_{2 eq}) excluding LULUCF 84.3 Included for 2040: 19.3 Bio-methane: -1.2 MtCO₂ Renewable fuels: -2.5 to -68.5 66.3 3 MtCO₂ 63.7 63.0 15.7 -90% 2.2 3.7 3.6 2.3 39.8 36.1

23.8

23.8


2020 2021 2022 2023


24.1

21.6

22.9

2005

8.8

2.6

13.0

base

2040 2040

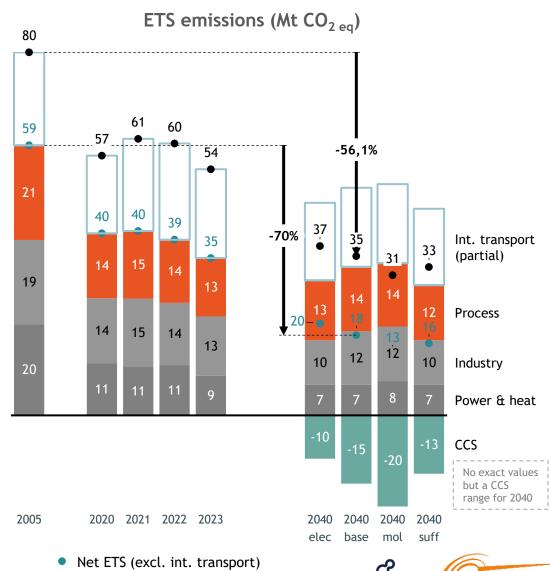
24.9

8.8

-90% 2040

indicative elec

Zoom on estimated emissions for ETS scope for 2040


Main changes in comparison with PC scenarios for ETS:

- Demand scenarios are adapted based on PC feedbacks: industry reference and assumptions for specific sectors
- Improvements are made regarding the splitting methodology between ETS/ESR emissions for industry and power generation
- CCS pathways are integrated (cf. previous slides)
- Process emissions are adapted due to closure or plant modifications (i.e. Total naphtha cracker, Yara)

Potential additional measures to reduce the ETS emissions

- Integrate additional reductions due to RED III transposition at BE level for the international transport sector
- Sufficiency sensitivity (compared to BASE scenario):
 - -4 MtCO₂ for industry and process emissions
 - -0.6 MtCO₂ for international transport

No target for ETS at Belgian level to be considered

Total Net ETS

Topics

Scenarios and sensitivities

Final energy demand

Overall scenario results

Building demand

Transport demand

Industry demand

Other elements to be considered in the consumption of electricity - Data centers & CCS demand

Energy supply

Electricity supply

Molecule supply

Greenhouse gas emissions

Market modelling of the system- Broad overview of comments*

* Please note that all comments have been taken into account and will be available in the consultation report. This summary focuses on some key messages. Always refer to the full response to get the correct view of the stakeholders comment.

General

 Study better the curtailment of renewables, including flexibility, storage, interconnections, flexibly consumption...

Need clear methodology and criteria for selecting climate years

 Need clear approach for modelling electricity imports and a view on scenarios to be used for neighbouring countries

 Why consult on (electricity) flexibility methodology at this stage? Stakeholders who suggested it

BBL-Canopea

CREG

EDORA

VNR

Scenarios for other countries

Use of TYNDP26 scenarios (NT+) as much as possible (public consultation data or latest collected data at ENTSO-E for the electricity part), this to ensure full consistency with the European framework.

Current public consultation of TYNDP26 scenarios:

ENTSO-E and ENTSOG public consultation on the TYNDP 2026 Scenarios' input assumptions, data, parameters and methodologies - European Network of Transmission System Operators for Electricity - Citizen Space

Additional sensitivities/scenarios on an EU level:

- On gas/CO2 prices
- On electricity mix (for example: more PV, less offshore)
- •

! FLEX+ will be applied on an EU level (not only in BE)

THANK YOU

for your participation and valuable input!

KICK-OFF - 13.03

INDUSTRY DEMAND - 03.06

TRANSPORT AND BUILDING DEMAND - 17.04

ENERGY SUPPLY - 08.07

