

Workshop on Macro Demand Forecasting tool

Methodology description

Bilal Hahati Rafael Feito-Kiczak

<u>Climact</u>

Benoît Martin

Michel Cornet

Brussels January 27th, 2020

Agenda

Scope and goals definition

Tool description

Methodology description

Next steps

Scope and goals definition

Elia relies for around 5 years on forecasts provided by IHS Markit (CERA) although the transparency of the methodology and the assumptions are limited

CLIMAC

4

Elia initiated a project to improve the current projection modelling of total electricity demand for Belgium

Goals

Improve current methodology in Elia in order to replace the IHS Markit forecast for future studies

More detailed approach in order to better understand the main drivers behind the evolution of total demand

Better integration of policy changes in the demand forecasting (e.g. LEDs, electric vehicle penetration, energy efficiency measures, etc.)

Open-source tool with transparent methodology and assumptions

CLIMAC

2040

Climact developed the solution based on their strong expertise in energy modelling at global, European, national, regional levels

CLIMAC	T

Project	Subproject or content	
Global Calculator (for DECC)	Model energy, emissions & resources	
Climate Transparency Initiative (CW Foundation)	Regional models for EU, India, China, Americas, Brazil	
Science Based Targets	Technical Board advisory	
Climate Transparency Initiative (for ECF)	 Net zero scenarios by 2050 Focus on policy angle 	
Low Carbon group (Bruegel)	Net zero by 2050 analysis	
EUCalc (for commission)	Model of energy, emissions, socio economic and resources	
2050 Calculators (for administrations)	• > 15 countries ⁽¹⁾	
National analysis (SPF, BE.FIN, Heinrich Böll Stiftung, Greenpeace)	 Carbon pricing, circular economy strategy, macro economic impact, nuclear phase-out impact, Energy efficiency impacts 	
2050 Calculators & analysis	• Federal , Wallonia, Flanders, Brussels	
Sector roadmaps	 Walloon Buildings renovation strategy Federations: Agoria, Cobelpa, FIV, Fedustria, GSV, Fetra, Febelgra 	
Regional analysis (AWAC, DGO4, IBGE)	Socioeconomic impact of low carbon plansRegional energy balance	

City roadmaps

• Various analysis⁽²⁾

NOTES: (1) Non-exclusive list: Albania, Algeria, Belgium, Bosnia, Croatia, Kosovo, Macedonia, Montenegro, Serbia (2) Ans, Les Bons Villers, Louvain-la-Neuve, Mons, Namur, Pont-à-Selle, Seneffe, Visé

Comprehensive expert consultation for 2013 SPF study

Tool description

The BECalc model that we developed in 2019 is a simulation tool that computes energy and GHG emissions

Current solution will provided needed projection on total electricity demand in the framework of strategic reserve evaluation

Input levers driving evolution of future consumption for each sector can be set to 4 different ambition levels

Possible to select decimal levels (1.1, 1.2, etc) for each lever to match foreseen evolution

Input levers driving evolution of future consumption for each sector can be set to 4 different ambition levels

Input data						
Sectors	Levers		Levels			
			2	3 4		
Buildings	Lever B. Lever B. Lever B.		2 2 2	3 (4) 3 (4) 3 (4)		
Industry	Lever I. Lever I. Lever I.	$ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} $	2 2 2	$ \begin{array}{c} 3 \\ 3 \\ 3 \\ \end{array} \begin{array}{c} 4 \\ 4 \\ \end{array} $		
Transport	Lever T. Lever T. Lever T.		2 2 2	3 (4) 3 (4) 3 (4)		
Agriculture	Lever A. Lever A. Lever A. Lever A.	1 1 1	2 2 2	$ \begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ \end{array} \begin{array}{c} 4 \\ 4 \\ 4 \end{array} $		
Energy supply	Lever E. Lever E. Lever E.	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	2 2 2	3 4 3 4 3 4		

CLIMACT

elia

This tool is used to project total electricity consumption for Belgium based on input assumptions

What it covers

A comprehensive and dynamic model, covering all energy sectors

An **open-source** model (which could be complemented by an **online version** to increase reach and use)

The development of energy transition scenarios based on realistic and transparent assumptions

The insights and sector findings gathered through a large amount of previous engagements and expert consultations

What it does NOT do

CLIMAC.

Macro-economic analysis and climate change co-benefits are partially covered in EUCalc but not in BECalc

Scenarios are in no-way forecasts, no specific likelihood is attached to them

There is **no cost-optimization** in the model, taxes or subsidies are not considered

Methodology

Buildings
Transport
Industry
▲ Agriculture
▲ Energy supply

Methodology

Buildings

Transport

Industry

Agriculture

Energy supply

Building module takes into account future type of building, end-uses, heating/cooling technology and fuels

Building module takes into account materials needed for building (cement, steel, bricks, timber) to make the link on the impact for industrial sectors

CLIMAC1

ella

Calculation sequence of levers for the computation of energy and emissions in buildings

The demolition and renovation levers drive the heat demand of the building stock

Legend: Lever Model result

Uptake of decarbonized technologies and fuels

Methodology

Buildings
Transport
Industry
Agriculture
Energy supply

Transport module takes into account future demand, modal shift, powertrain technologies and fuels

Transport module computes the demand for new vehicles (cars, buses, trains,...) to take into account the impact for industrial sectors

CLIMACT

elia

Calculation sequence of levers for the computation of energy and emissions in transport

The fleet evolves to integrate new vehicles that are more efficient

Calculation sequence of technology mix lever

CLIMACT

elia

Methodology

Buildings
Transport
Industry
Agriculture
Energy supply

Industry module takes into account different industries, products, technologies and fuels

CLIMACT

elia

Main steps and levers to derive industrial activity in a endogenous way

elia

CLIMACT

The industrial activity can also be determined in an exogenous way

Methodology

Buildings
Transport
Industry
Agriculture
Energy supply

The agriculture module is addressing the demand for food, bionenergy and biomaterials from other modules

Methodology

Buildings Transport Industry 17 Agriculture Energy supply (\mathbf{r})

The energy supply sector answers the energy demand, leading to an electricity self-consumption

Losses computation: fixed percentage of total electricity demand + additional losses due to network evolution until 2030 (source: Elia)

CLIMACT

elia

Next steps

Next steps foreseen for 2020 and scenario for strategic reserve 2020

Interface will be publicly available on Elia website end Q2 - beginning Q3

Interface will be **publicly available** on **Elia website** *end* Q2 *- beginning* Q3 before public consultation of input data for Strategic Reserve study with:

Data for each sector/sub-sector (Excel export)

Underlying assumptions for each sector

Report on methodology and assumptions for 'CENTRAL' scenario

Process for scenario definition this year and next years

2020 : based on the last NECP **and** public consultation on input data available on website with description of assumptions. Exercise will be done with Climact for the construction of this 'CENTRAL' scenario

2021 and next years : update of 'CENTRAL' scenario with best estimate assumptions in concertation with a working group before public consultation for strategic reserve

Many thanks for your attention !

