

Electrification and flexibility

Frans Rooijers

Chris Jongsma

Committed to the Environment

CE Delft

- Independent research and consultancy since 1978
- Transport, energy and resources
- Know-how on economics, technology and policy issues
- 75 employees, based in Delft, the Netherlands
- Not-for-profit

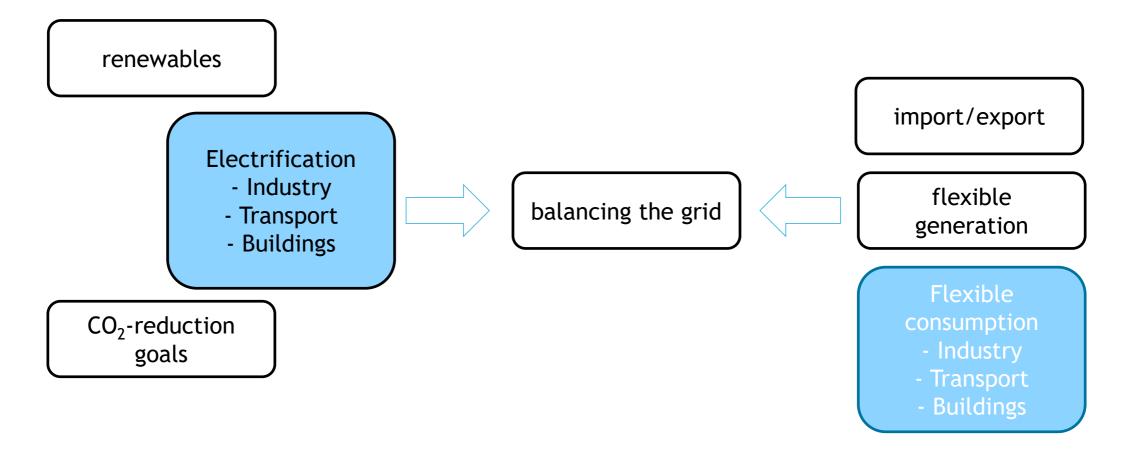
Clients

Industries (Small and medium size enterprises, transport, energy and trade associations)

Governments (European Commission, European Parliament, regional and local governments)

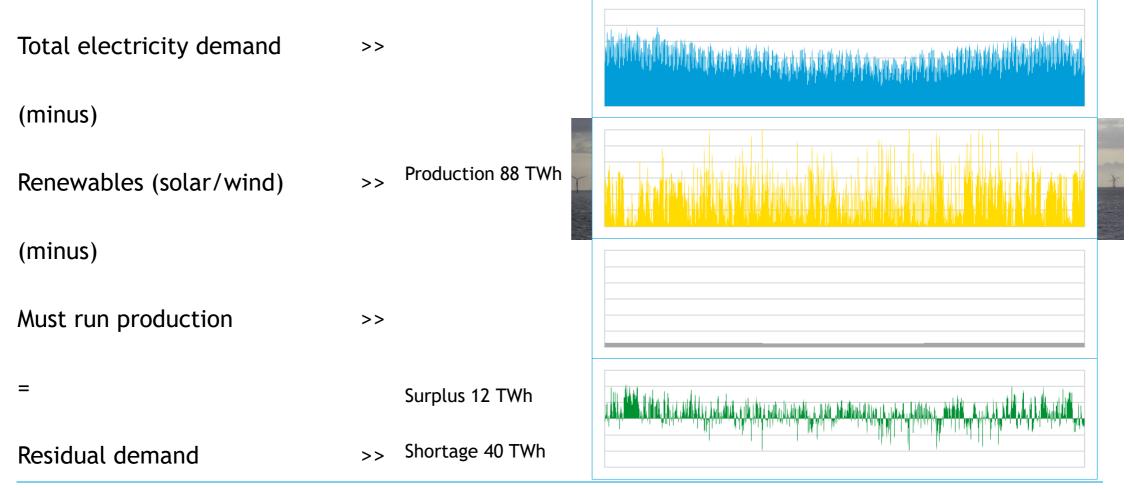
NGOs

Content


- Study for TenneT (the Dutch Elia)
 - 2030: Current demand + electrification options in industry, transport en buildings
 - Effect on demand pattern
 - Flex options
- What kind of flex options?
- Technologies and potential
- We didn't do a study for Elia or the Belgium situation, so
 - Figures based on Dutch situation 2030
 - Demand 120 TWh
 - Production 6 GW wind onshore, 11 GW wind offshore, 27 GW solar
 - Belgium:

B ~75% NL

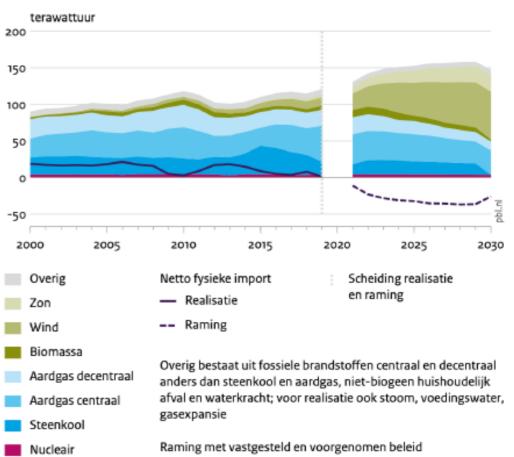
- Demand 90 TWh
- Production 4 GW wind onshore, 4 GW wind offshore, 11 GW solar



Content in schematic manner

Flex options?

2030: New situation for Flex options

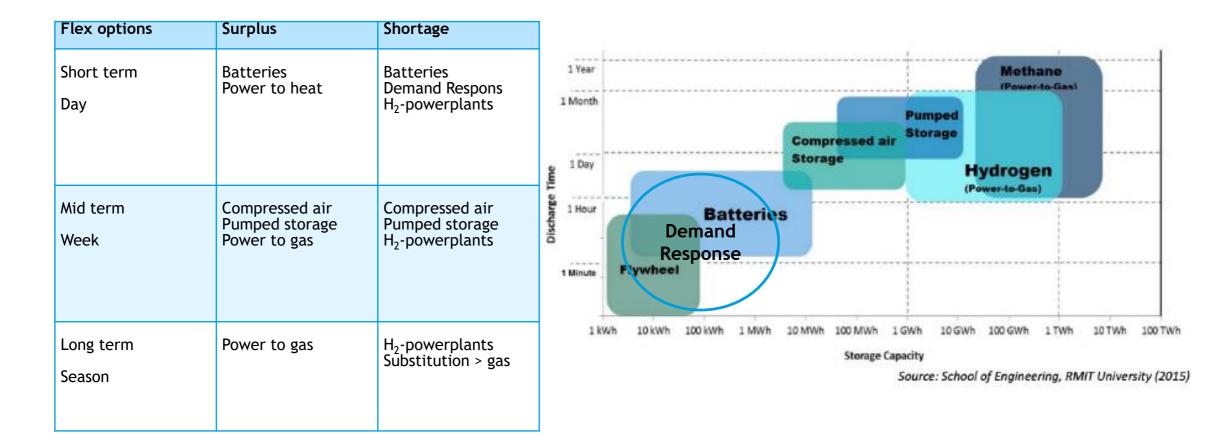

Traditional:

- Thermal power plants (natural gas, coal, nuclear)
- Interconnection

Future:

- More variable renewable sources (solar and wind)
- Putting surpluses to good use for more renewable energy
- Price difference peak/offpeak increases
- Accomodating extra Solar + Wind increasingly difficult
- Flexible demand can help

Elektriciteitsproductie


Which flex options are possible?

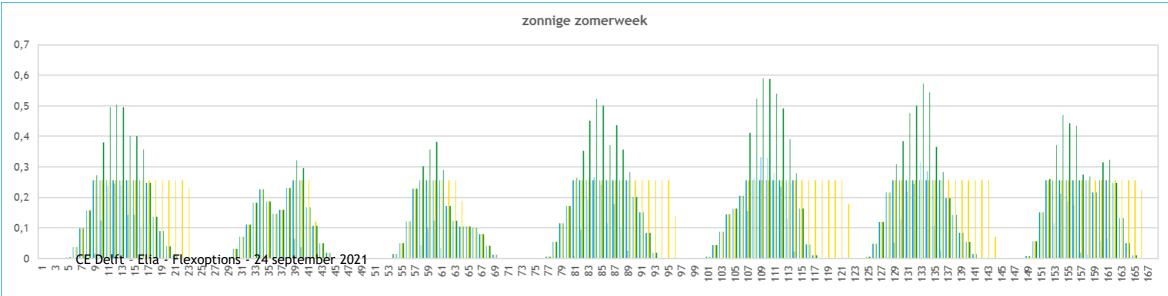
 Very short term 	(minutes, both surpluses/shortages and infrastructure)
Short term	(day, both surpluses/shortages and infrastructure)
 Medium term 	(week, surpluses/shortages)
 Long term 	(season, surpluses/shortages)

- Now: flexible thermal power stations + a bit of demand respons + a bit of batteries + interconnection
- Soon: ?

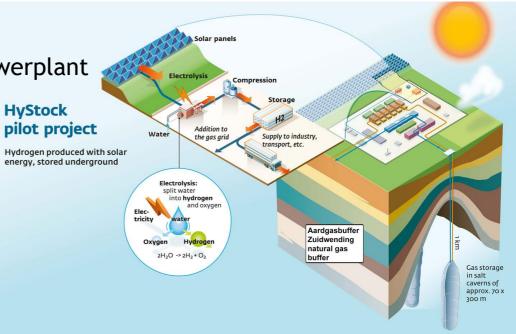

Which flex options?

Short term storage - Batteries

- Techniques:
 - Li-ion, flow, salt water
- Flexible, short time only, rapid respons
- Shortage and surplus
- Multiple services:
 - Balancing, intraday, day ahead, congestion
- Business case?
 - price of the battery >> rapid cost reduction
 - price difference electricity >> Now: too little volatility
 - Efficiency: high
- Coming years expanding


Short term - Demand Response

- Theoretical potential huge, but a lot of barriers
 - Helping end-users important
 - Lack of standardization
- Transport: Smart charging
 - Tariff incentives needed
 - Electricity suppliers are crucial
- Buildings: heating and cooling
 - Difficult to switch electrical heat pump
 - Interesting: substitution to hybrid heat pump
 - Power to heat for domestic heating systems
- Industry: the process is dominant
 - Power to heat, external investor needed

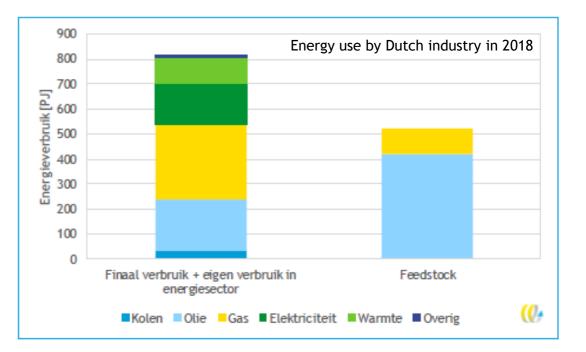

Infrastructure

- Short term congestion
 - Mostly extra capacity cheapest option
 - Demand respons
 - Local storage (batteries) for peakshaving
- Smart connection: half peak power + batteries
- Incentives needed for maximum utilization of the infrastructure

Long term storage - Hydrogen

- Seasonal storage and mid term surplus:
 - Surplus: Solar in the summer
 - Shortage: Electricity in the winter > thermal H₂ powerplant
- Little bit production in Belgium, too little surplus
- Import from The Middle East, Africa, South Europe
- Rapid cost reduction electrolysers
- Interesting development of fuel cell (bi-directional)
- Business case?
 - Green H_2 more expensive than natural gas & fossil H_2
- More in presentation Fluxys

Industry



Committed to the Environment

Electrification in the industry (NL)

- Production sectors (+7,7 to +55 TWh/j)
 - See next sheets
- Agriculture greenhouses (-1,1 to +2,7 TWh/j)
 - Lighting (-1,1 to + 2,1 TWh/j)
 - Heating (+0,1 to +0,5 TWh/j)
- Datacenters (+1,2 to +19 TWh/j)
 - Extra demand in the coming years
- Feedstock (+1,0 to +7,3 TWh/j)
 - Production of hydrogen

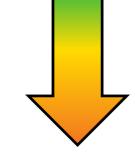
Electrification of heat - Barriers

The most important barriers:

- 1. Marginal costs fossil vs electricity: as long as the marginal costs are higher, there is no reason to invest.
- 2. Investment costs: the business case must be good even with lower marginal costs.
- 3. Infrastructure: before electrification is possible, it must be ensured that the infrastructure will be available

Industrial Heatpump https://industrialheatpumps.nl/en/applications/

Industrial flex options

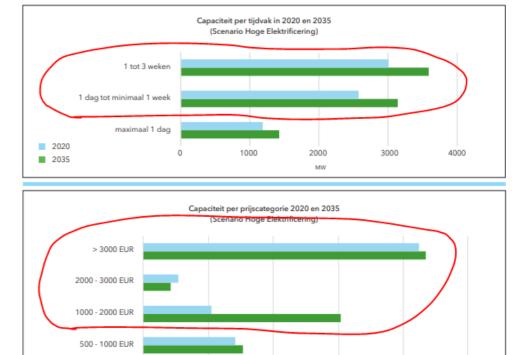

- Demand response
- Hybrid boilers
- Thermal storage

Industrial flex - Demand response

- Different degrees of flexibility
 - Fully flexible electrified process
 - Stepwise flexible production process
 - Time delay in batch production
 - Plant shutdown

Minimum activation duration Activation price Notice period

Industrial flex - Demand response


- Activation prices can be (very) high
 - Energy cost in most industries less than margin on production
 - Customer contracts can have fines on failed delivery
 - Installations can take hours/days/weeks to restart
- Demand response is low on list of industry drivers:
 - 1. Safety
 - 2. Quality
 - 3. Reliability
 - 4. Efficiency/energy
- Role for external all-in service party

Industrial flex - Demand response

Bottom-up analysis 2020 NL:

- Currently ~700 MW participating
- Max economical activation 1,9 GW
- Total demand response potential 3,4 GW
- Max NL electricity demand ca. 20 GW
- Significant share of industrial demand response at
 - Long durations (>1 day); and/or
 - Lond notice periods (>1 day); and/or
 - High activation price (>1000 €/MWh)

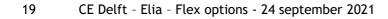
1000

1500

MW

2000

DNV-GL (2020) - De mogelijke bijdrage van industriële vraagrespons aan leveringszekerheid


500

100 - 500 EUR

2020

2035

< 100 EUR

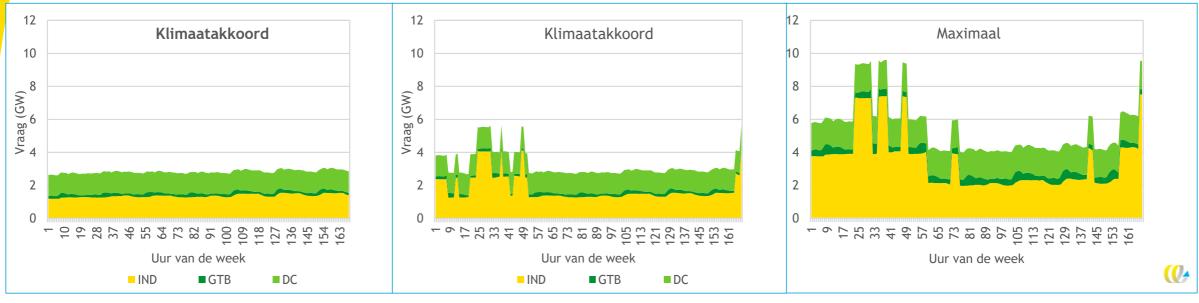
2500

Industrial flex - Hybrid boilers

- Integration of electric boiler with existing gas-fired boiler
- Total potential ~2,5 GW in NL
- Full load hours dependent on prices
- Industry specific incentives/pricing can increase use beyond hours of excess electricity generation
- Long term potential uncertain: switch to full electric or hybrid hydrogen?

Industrial flex - Thermal storage

- Electric storage = expensive, thermal storage = cheap!
- Simple and mature technology
- Easy to scale to GWh scale
- Intermittency required
 - Constant demand + oversized grid connection
 - Fluctuating demand
- Potential for application yet unknown



Siemens ETES in Hamburg: 1000 t rock, 6 $\rm MW_{th}/130~\rm MWh_{th}$ or 1,5 $\rm MW_e/30~\rm MWh_e$ from steam turbine

Industry - Total demand

Week 1, weerjaar 2015

Electrification, no flex

22

Electrification, with flex

Max electrification 2030, with flex

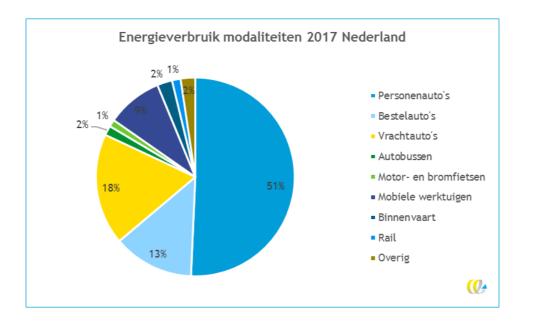
- Demand pattern of industry is essentially flat
- Demand peaks by electric boilers and electrolysers
- Extra flexibility by demand response possible (not shown here)

GTB = Greenhouses

DC = Datacentres

IND = Industry

Transport



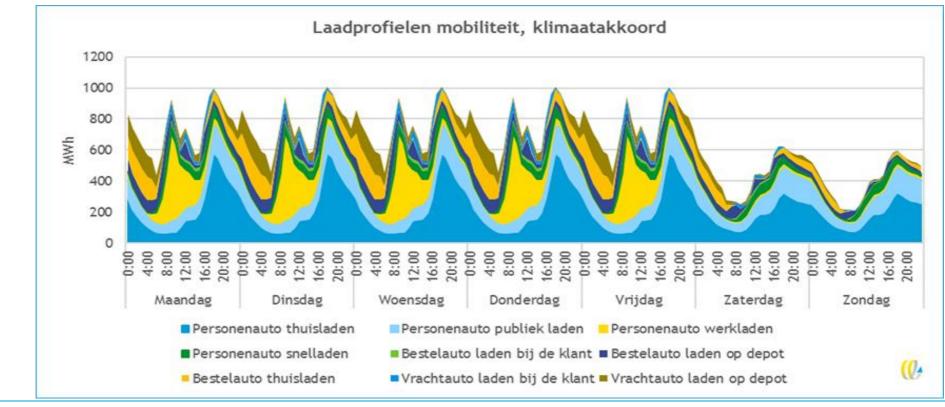
Committed to the Environment

Transport - Current demand

- Total energy demand mobility 500 PJ (142 TWh) per year (petrol/diesel)
- Electricity demand 1,9 TWh/year, mainly rail (1,4% of total demand transport)

Number of ZE (zero-emission, batteries) vehicles

	Baseline 2030	2030 - extra incentives
Passenger vehicles	0,5 mln	1,9 - 2,25 mln
Vans	50.000	115.000 - 420.000
Trucks (city logistics)	2.200	10.000 - 30.000
Busses	4.500	4.500
Machinery	-	10% - 20% ZE in building sector


- Continuous acceleration of electrification in transport sector!
- Total electricity demand in 2030 3 6 times higher (7 12 TWh/j) than existing demand (1,9 TWh/j)
- Energy demand is not only determined by number of vehicles but also annual milage and energy efficiency
- Electrification is necessay for flex options in this sector

Transport - Demand pattern 2030

- Peaks at the beginning and end of working days
- Charging demand for passenger cars dominant in peaks

Transport - Flex options

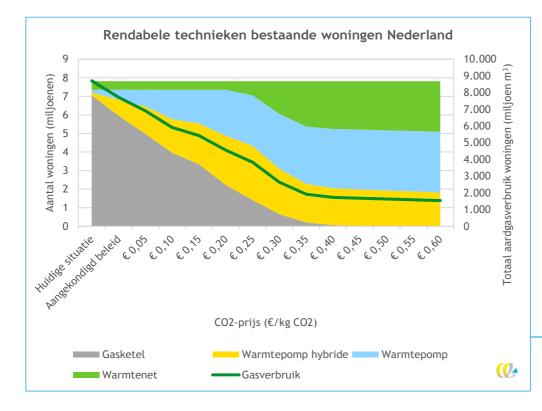
- Demand pattern shift: smart charging
 - Spreading passenger car workloads over the day
 - Spreading home charging of passenger cars and delivery vans over the evening and night
 - Spreading the depot loading of buses and delivery vans and trucks over the evening and night
 - Logistics & heavy duty: possibilities very limited
 - Charging combined with rest period
 - "Charge me now" possibility important for public acceptance

Transport - Flex options

- Temporary storage surpluses: V2G vehicle to grid
 - Charge the vehicle when there is a surplus, discharge when there is a shortage on the grid
 - Vehicle must be technically suitable (current offer is limited)
 - Incentives needed for vehicle owners

Buildings

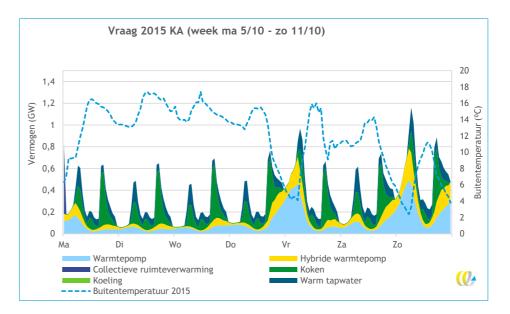
Committed to the Environment


CO₂-reduction >> electrification

- NL 2020: 90% natural gas
- Electrification depends on:
 - Local policy
 - Municipal heat plans
 - Subsidies
 - National policy
 - Laws and regulations
 - Subsidies, taxes and CO₂-pricing
- General resistance in society to change away from gas-based heating

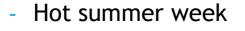
Buildings - Techniques and potential

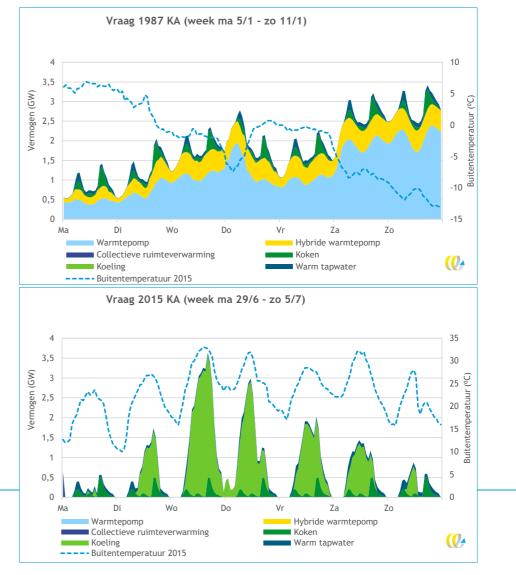
- CO₂-free: >> several options
 - 35% district heating
 - 40% electric heat pump
 - 25% hybrid heat pump



Function	Techniques Heating and cooling	Flexible?
Individual space heating	Electric heatpump	Yes, technically Difficult in behavior
	Hybrid heatpump	Yes, technically Difficult in behavior fewer problems compared with all electric heat pump
District heating	LT heating system	Heat buffer Power to Heat
Warm water	Heat pump boiler	Yes, short term
	Electric boiler	Yes, short term
Cooling	Air conditioning	Synchronized with solar
Cooking	Induction	No, high power for short time only (battery?)
Divers	Washing machine Dishwasher	Yes, short term

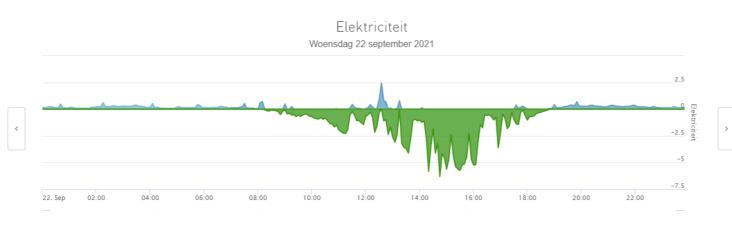
Buildings - Additional demand pattern

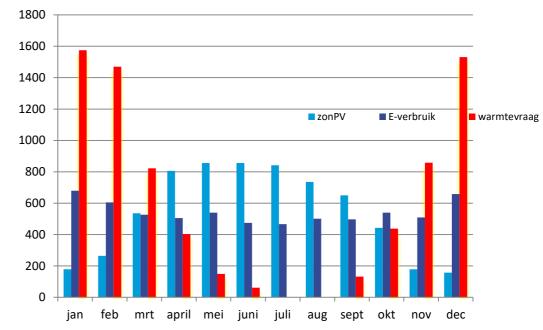

- Average week in the main scenario
- Heat pumps largest energy demand
- Hybrid heat pumps do not have high peaks due to gas boiler
- Cooking and hot water cause peaks



Buildings - Additional demand pattern, extreme weeks

- Cold winter week
 - Heating is dominant
 - 0,5 3 GW


- Cooling is dominant
- 0-3,5 GW



33 CE Delft - Elia - Flexoptions - 24 september 2021

Home battery

- For solar systems
 - High price volatility >> also day/night
- Expensive at this moment
 - Rapid cost reduction
- Only useful for short term

2030: conclusions (NL)

- More need of flexibility
 - By introduction a lot of solar and wind
- A lot of flex options are available
 - For all time spans
 - Surpluses and shortages can be reduced
 - Surpluses decrease sharply in time by batteries (autonomous)
- Only policy can ensure that in the next 15 years
 - natural gas plants are being replaced by
 - storage, demand management and H₂ power plants
- Possible policies:
 - Strong lowering of ETS emissions cap (EU Green Deal)
 - Standard: max CO₂/kWh

Thanks for your attention

More information:

Chris Jongsma

Frans Rooijers

- CE Delft
- Oude Delft 180
- 2611 HH Delft
- jongsma@ce.nl + rooijers@ce.nl

All our publications: <u>www.ce.nl</u> or <u>www.cedelft.eu</u>

