reliability: confidence in getting correct data at expected times

availability: fixed update time

consistency/ same data same value, DST alignments

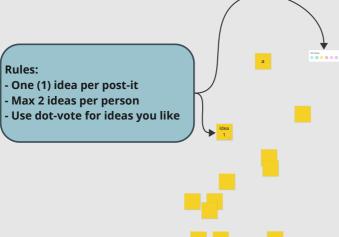
9h00-9h30 Victor

Introduction

Wifi

Username: victor.lemaire@elia.be1

Password: ymp1UW6q

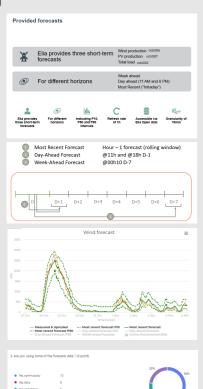

MIRO

https://miro.com/app/board/uXjVLITu2bo=/


Password: Elia2024

--> Signed in with your MIRO account is always a plus (we

will see your real name)


Today's meeting expectations

Provided data

No but I am considering it 7

10h00-10h30 Frederik

Data quality

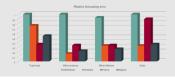
Tendering of forecasts

- All forecasts are created by external parties
- Tendering happens ~every 5 year
- o 3-month live phase to determine best provider (main evaluation criteria: RMSE DA forecast)
- During these years continuous monitoring of performance forecasts
- Challenge specific events
- Competitive environment
- Confidence to have best-in-market forecast for current metrics
- Creation of forecasts black box due to IP
- Wind: Viteo
- Solar production: Emsys
- Total load: Aleasoft

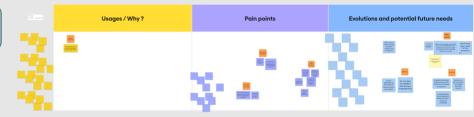
Monitoring forecasts

1. Wind

- No correlation between time of day and production - All timestamps equally important
- Metrics to monitor
- Root Mean Square Error
- 2. Bias
- 3. Width of the confidence interval
- 4. Accuracy of confidence interval - For all time horizons


2. Same for total load

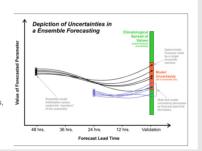
3. Solar


Same metrics useful but...

Production and time of day highly correlated

- Same relative error at noon more important than in the morning Additional metrics quantifying the maximum error must be introduced
- 1. Max error per day
- 2. Direction of max error per day (over/underestimation)
- 3. Accuracy of confidence intervals at solar peak

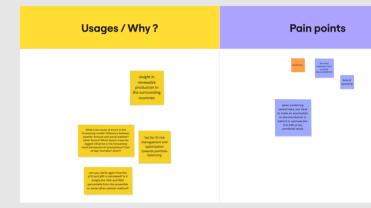
Rules: - One (1) idea per post-it - Max 2 ideas per person - Use dot-vote for ideas you like


10h45-11h15 Frederik

Uncertainty management

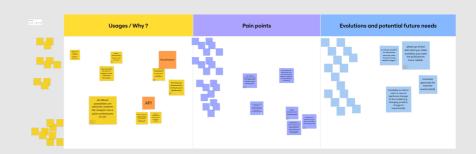
Ensemble forecasting

- Different models trained
 - Fed with different weather models
- Models yield forecasts for desired time window(s)
- P10 and P90 values are based on this ensemble of forecasts
 - o If all align well, small confidence bands
 - If some react strongly on certain parameters, wide bands
 - Dynamical bands, reflecting uncertainty
- Point forecast = P50 or mean



Probabilistic approaches

- Trend towards more probabilistic approaches
 - Cost optimization
 - o "Risk management"
 - o Show uncertainty of forecasts
 - \rightarrow RES penetration makes that decisions cannot simply be done on the point forecast anymore
- Combine models to have more robust forecast



Data accessibility and visualization

Rules:
- One (1) idea per post-it
- Max 2 ideas per person
- Use dot-vote for ideas you like

D-1: UMM to ask for more downward reserves: based

on spinning reserves view

Evolutions and potential future needs

Pain points

Conclusion - next steps - follow up

- Today was about need characterization, we will keep you informed on planned evolutions/solutions on our side in WG ES/Grid.
- For remaining open points, always possible to contact KAM and Victor le Maire.
- You can still place some post-it below if you still have topic you wish to address.

exceeding p10 and p90 is quite

inconsistent, and deviates from 10%. Should probably look into it a bit more Nice that this meeting has been organized

2 2 2 1 presume feed-back/follow-up on the discussed points will be provided

